U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus [RNA-Seq]

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway plays a crucial role in preventing endogenous genomic parasites, transposable elements (TEs), from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, define each species’ piRNA repertoire and therefore its capacity to recognize and silence transposons. In the somatic cells of the Drosophila melanogaster ovary, the flamenco (flam) unistrand cluster is the main source of piRNAs and primarily regulates Gypsy family TEs that are able to form virus-like particles and infect neighbouring germ cells. more...
Organism:
Drosophila ananassae; Drosophila persimilis; Drosophila takahashii; Drosophila simulans; Drosophila yakuba; Drosophila suzukii; Drosophila erecta; Drosophila mojavensis; Drosophila virilis; Drosophila azteca; Drosophila biarmipes; Drosophila bifasciata; Drosophila melanogaster; Drosophila pseudoobscura; Drosophila subobscura; Drosophila ficusphila
Type:
Expression profiling by high throughput sequencing
10 related Platforms
35 Samples
Download data: BW
Series
Accession:
GSE225887
ID:
200225887
2.

Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus [ATAC-Seq]

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway plays a crucial role in preventing endogenous genomic parasites, transposable elements (TEs), from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, define each species’ piRNA repertoire and therefore its capacity to recognize and silence transposons. In the somatic cells of the Drosophila melanogaster ovary, the flamenco (flam) unistrand cluster is the main source of piRNAs and primarily regulates Gypsy family TEs that are able to form virus-like particles and infect neighbouring germ cells. more...
Organism:
Drosophila simulans; Drosophila suzukii; Drosophila biarmipes; Drosophila erecta; Drosophila persimilis; Drosophila ficusphila; Drosophila melanogaster; Drosophila pseudoobscura; Drosophila yakuba
Type:
Genome binding/occupancy profiling by high throughput sequencing
9 related Platforms
18 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE240910
ID:
200240910
3.

Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila mojavensis; Drosophila persimilis; Drosophila azteca; Drosophila takahashii; Drosophila melanogaster; Drosophila simulans; Drosophila yakuba; Drosophila suzukii; Drosophila ananassae; Drosophila subobscura; Drosophila virilis; Drosophila biarmipes; Drosophila erecta; Drosophila pseudoobscura; Drosophila ficusphila
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
20 related Platforms
118 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE225889
ID:
200225889
4.

Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus [small RNA-Seq]

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway plays a crucial role in preventing endogenous genomic parasites, transposable elements (TEs), from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, define each species’ piRNA repertoire and therefore its capacity to recognize and silence transposons. In the somatic cells of the Drosophila melanogaster ovary, the flamenco (flam) unistrand cluster is the main source of piRNAs and primarily regulates Gypsy family TEs that are able to form virus-like particles and infect neighbouring germ cells. more...
Organism:
Drosophila persimilis; Drosophila takahashii; Drosophila ananassae; Drosophila erecta; Drosophila mojavensis; Drosophila virilis; Drosophila azteca; Drosophila biarmipes; Drosophila simulans; Drosophila yakuba; Drosophila suzukii; Drosophila bifasciata; Drosophila melanogaster; Drosophila pseudoobscura; Drosophila subobscura; Drosophila ficusphila
Type:
Non-coding RNA profiling by high throughput sequencing
15 related Platforms
65 Samples
Download data: BW
Series
Accession:
GSE225888
ID:
200225888
5.

Large Drosophila Germline piRNA Clusters are Evolutionarily Labile and Dispensable for Transposon Regulation

(Submitter supplied) PIWI proteins and their guiding Piwi-interacting small RNAs (piRNAs) are crucial for fertility and transposon defense in the animal germline. In most species, the majority of piRNAs are produced from distinct large genomic loci, called piRNA clusters. It is assumed that germline-expressed piRNA clusters, particularly in Drosophila, act as master regulators to control the activity of transposons dispersed across the genome. more...
Organism:
Drosophila melanogaster
Type:
Other; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL25244 GPL17275
30 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE174561
ID:
200174561
6.

Expression profile and RNA Polymerase II occupancy of transposable elements among knock down of the piRNA pathway components in OSCs

(Submitter supplied) The Piwi–piRNA complex (Piwi–piRISC) in Drosophila ovarian somatic cells represses transposons transcriptionally to maintain genome integrity; however, the underlying mechanisms remain obscure. We performed mRNA-seq analysis from OSCs transfected with siRNAs against CG3893, the known piRNA pathway genes, Piwi, Maelstrom, HP1a and Armitage, and the control (EGFP), and PolII ChIP-seqanalysis from OSCs transfected with siRNAs against CG3893, Piwi, Mael and the control (EGFP). more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13304 GPL16479
10 Samples
Download data: TXT
Series
Accession:
GSE47006
ID:
200047006
7.

Multiple roles for Piwi in silencing Drosophila transposons

(Submitter supplied) Silencing of transposons in the Drosophila ovary relies on three Piwi-family proteins, Piwi, Aubergine (Aub), and Ago3, acting in concert with their small RNA guides, the piRNAs. Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL13304 GPL16479
16 Samples
Download data: TXT, XLS
Series
Accession:
GSE43360
ID:
200043360
8.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL19132 GPL17275
19 Samples
Download data: BW, TXT
Series
Accession:
GSE83238
ID:
200083238
9.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [smallRNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275
5 Samples
Download data: TXT
Series
Accession:
GSE83236
ID:
200083236
10.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [RNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19132
4 Samples
Download data: TXT
Series
Accession:
GSE83235
ID:
200083235
11.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [ChIP-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17275
10 Samples
Download data: BW
Series
Accession:
GSE83234
ID:
200083234
12.

Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis

(Submitter supplied) The piRNA pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. piRNAs are maternally deposited and required for proper transposon silencing in adult offspring. However, a long-standing question in the field is the precise function of maternally deposited piRNAs and its associated factors during embryogenesis. Here, we probe the spatio-temporal expression patterns of several piRNA pathway components during early stages of development. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL21306
62 Samples
Download data: BED, BW
Series
Accession:
GSE160778
ID:
200160778
13.

piRNA-mediated regulation of transposon alternative splicing in soma and germline

(Submitter supplied) Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. We show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17275
20 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE103582
ID:
200103582
14.

HITS-CLIP analysis of Yb binding sites in Drosophila ovary cell line

(Submitter supplied) piRNAs direct Piwi to repress transposons to maintain genome integrity in Drosophila ovarian somatic cells. piRNA maturation and association with Piwi occur at perinuclear Yb bodies, the centers of piRNA biogenesis. Here, we show that piRNA intermediates arising from the piRNA cluster flamenco (flam) concentrate into perinuclear foci adjacent to Yb bodies, termed Flam bodies. Although flam expression is not required for Yb body formation, Yb, the core component of Yb bodies, is required for Flam body formation. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL13304
1 Sample
Download data: TXT
Series
Accession:
GSE54875
ID:
200054875
15.

Co-chaperone Hop/dSTIP1 is required for piRNA biogenesis and transposon silencing

(Submitter supplied) piRNAs are 26-30nt germ-line specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element silencing and maintenance of genome integrity. It has been shown that Drosophila Hsp70/90 Organizing Protein Homolog (Hop) – a co-chaperone interacts with piRNA binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known if Hop has a direct role in piRNA biogenesis and transposon silencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17275
6 Samples
Download data: TXT
Series
Accession:
GSE93934
ID:
200093934
16.

Germline piRNAs counteract endogenous retrovirus invasion from somatic cells

(Submitter supplied) In metazoan gonads, transposable elements (TEs) mobilization is limited by PIWI-interacting RNAs (piRNAs). These small RNAs originate from specific source loci, the piRNA clusters. piRNAs are known to silence TEs in the cells where they are produced. Endogenous retroviruses (ERVs), a subclass of TEs, pose a particular threat because they are capable of transiting from cell to cell. In this study, we reveal that piRNAs produced locally in germ cells counteract invasion by ERVs arriving from adjacent somatic cells. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL32218
3 Samples
Download data: BIGWIG
Series
Accession:
GSE235966
ID:
200235966
17.

Germline piRNAs counteract endogenous retrovirus invasion from somatic cells - Total genomic DNA

(Submitter supplied) In metazoan gonads, transposable elements (TEs) mobilization is limited by PIWI-interacting RNAs (piRNAs). These small RNAs originate from specific source loci, the piRNA clusters. piRNAs are known to silence TEs in the cells where they are produced. Endogenous retroviruses (ERVs), a subclass of TEs, pose a particular threat because they are capable of transiting from cell to cell. In this study, we reveal that piRNAs produced locally in germ cells counteract invasion by ERVs arriving from adjacent somatic cells. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL32672
2 Samples
Download data: TXT
Series
Accession:
GSE213456
ID:
200213456
18.

Germline piRNAs counteract endogenous retrovirus invasion from somatic cells- small RNA

(Submitter supplied) In metazoan gonads, transposable elements (TEs) mobilization is limited by PIWI-interacting RNAs (piRNAs). These small RNAs originate from specific source loci, the piRNA clusters. piRNAs are known to silence TEs in the cells where they are produced. Endogenous retroviruses (ERVs), a subclass of TEs, pose a particular threat because they are capable of transiting from cell to cell. In this study, we reveal that piRNAs produced locally in germ cells counteract invasion by ERVs arriving from adjacent somatic cells. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL19132
20 Samples
Download data: TXT
Series
Accession:
GSE213368
ID:
200213368
19.

piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

(Submitter supplied) PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BW, TXT
Series
Accession:
GSE71775
ID:
200071775
20.

Natural variation of piRNA expression affects immunity to transposable elements

(Submitter supplied) In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
7 Samples
Download data: TXT
Series
Accession:
GSE83316
ID:
200083316
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=17|blobid=MCID_6748e5a7462e1a751e13e0ad|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center