U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Knockdown of Brd4 or SEC affects the HMBA-induced global Pol II pausing release

(Submitter supplied) To test whether Brd4 and SEC co-regulate the release of promoter-proximally paused Pol II, we performed Pol II ChIP-Seq to analyze the effect of depletion of Brd4 or SEC on HMBA-induced pause release in HCT116 cells.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
6 Samples
Download data: BED
Series
Accession:
GSE76784
ID:
200076784
2.

RNA Polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA Polymerase II

(Submitter supplied) Release of promoter-proximal paused RNA polymerase II (Pol II) during early elongation is a critical step in transcriptional regulation in metazoan cells. Paused Pol II release is thought to require the kinase activity of cyclin-dependent kinase 9 (CDK9) for the phosphorylation of DRB sensitivity-inducing factor, negative elongation factor, and C-terminal domain (CTD) serine-2 of Pol II. We found that Pol II-associated factor 1 (PAF1) is a critical regulator of paused Pol II release, that positive transcription elongation factor b (P-TEFb) directly regulates the initial recruitment of PAF1 complex (PAF1C) to genes, and that the subsequent recruitment of CDK12 is dependent on PAF1C. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11154 GPL16791
32 Samples
Download data: BEDGRAPH, TXT
3.

SPT6 functions in transcriptional pause-release via PAF1C recruitment

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL18573 GPL24676
78 Samples
Download data: BW
Series
Accession:
GSE202190
ID:
200202190
4.

SPT6 functions in transcriptional pause-release via PAF1C recruitment [RNA-seq]

(Submitter supplied) In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in release of paused RNA Pol II. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
12 Samples
Download data: CSV
Series
Accession:
GSE202189
ID:
200202189
5.

SPT6 functions in transcriptional pause-release via PAF1C recruitment [PRO-seq]

(Submitter supplied) In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in release of paused RNA Pol II. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL18573 GPL24676
16 Samples
Download data: BW
Series
Accession:
GSE202187
ID:
200202187
6.

SPT6 functions in transcriptional pause-release via PAF1C recruitment [ChIP-seq]

(Submitter supplied) In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in release of paused RNA Pol II. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
50 Samples
Download data: BED, BW
Series
Accession:
GSE202184
ID:
200202184
7.

NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release

(Submitter supplied) RNA polymerase II (Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL24676 GPL18573
69 Samples
Download data: BW
8.

Distinct Cdk9-phosphatase switches act on elongation factor Spt5 at the beginning and end of the RNA polymerase II transcription cycle

(Submitter supplied) The Pol II transcription cycle is ordered by CDKs and phosphatases. In fission yeast, Cdk9 phosphorylates carboxy-terminal repeats (CTRs) of Spt5 while inhibiting PP1 during elongation. Transcription past the cleavage and polyadenylation signal (CPS) coincides with PP1-dependent Spt5 dephosphorylation and leads to Pol II pausing with phosphorylated CTD-Ser2 (pSer2). Here we show this switch is conserved in humans: Cdk9 inhibition decreases phosphorylation of both PP1g and Spt5-Thr806 (pThr806), and induces pSer2 upstream of the CPS, whereas PP1 depletion increases pThr806. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
22 Samples
Download data: BIGWIG
Series
Accession:
GSE138548
ID:
200138548
9.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5 [TT-seq]

(Submitter supplied) Transcription machinery progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Yet its mechanistic understanding in human cells remains incomplete. Here we utilize rapid degradation system and reveal crucial function of SPT5 in maintaining cellular and chromatin Pol II levels. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20795
6 Samples
Download data: BW
Series
Accession:
GSE183506
ID:
200183506
10.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5 [PRO-seq]

(Submitter supplied) Transcription machinery progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Yet its mechanistic understanding in human cells remains incomplete. Here we utilize rapid degradation system and reveal crucial function of SPT5 in maintaining cellular and chromatin Pol II levels. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20795
25 Samples
Download data: BW
Series
Accession:
GSE183505
ID:
200183505
11.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL24676 GPL20795
69 Samples
Download data: BW
Series
Accession:
GSE180845
ID:
200180845
12.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5 [ATAC-seq]

(Submitter supplied) Transcription machinery progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Yet its mechanistic understanding in human cells remains incomplete. Here we utilize rapid degradation system and reveal crucial function of SPT5 in maintaining cellular and chromatin Pol II levels. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20795
4 Samples
Download data: BW
Series
Accession:
GSE180844
ID:
200180844
13.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5 [RNA-seq]

(Submitter supplied) Transcription machinery progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Yet its mechanistic understanding in human cells remains incomplete. Here we utilize rapid degradation system and reveal crucial function of SPT5 in maintaining cellular and chromatin Pol II levels. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20795
6 Samples
Download data: BW
Series
Accession:
GSE180843
ID:
200180843
14.

Stabilization of Pol II protein, orchestration of transcription cycles, and maintenance of enhancer landscape by general transcription regulator SPT5 [ChIP-seq]

(Submitter supplied) Transcription machinery progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Yet its mechanistic understanding in human cells remains incomplete. Here we utilize rapid degradation system and reveal crucial function of SPT5 in maintaining cellular and chromatin Pol II levels. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
28 Samples
Download data: BW
Series
Accession:
GSE180842
ID:
200180842
15.

Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy

(Submitter supplied) The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. more...
Organism:
Drosophila melanogaster; Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL18573 GPL19132
111 Samples
Download data: BW
Series
Accession:
GSE112608
ID:
200112608
16.

PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL16791
26 Samples
Download data
Series
Accession:
GSE124659
ID:
200124659
17.

PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy [RNA-seq]

(Submitter supplied) Control of gene expression is one of the most complex yet continuous physiological processes impacting cellular homeostasis. RNA polymerase II (Pol II) transcription is tightly regulated at promoter-proximal regions by intricate dynamic processes including Pol II pausing, release into elongation, and premature termination. Here, we identify PTEN interacting with the Pol II transcription machinery and dephosphorylating Pol II C-terminal domain in vitro. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
8 Samples
Download data: TXT
18.

PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy [ChIP-seq]

(Submitter supplied) Control of gene expression is one of the most complex yet continuous physiological processes impacting cellular homeostasis. RNA polymerase II (Pol II) transcription is tightly regulated at promoter-proximal regions by intricate dynamic processes including Pol II pausing, release into elongation, and premature termination. Here, we identify PTEN interacting with the Pol II transcription machinery and dephosphorylating Pol II C-terminal domain in vitro. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
18 Samples
Download data: BIGWIG
Series
Accession:
GSE124657
ID:
200124657
19.

Identification of Med26 target genes in Human HEK 293T cells

(Submitter supplied) Med26 is a subunit of the Human Mediator complex. The Mediator complex is an evolutionarily conserved coregulatory complex that interacts with RNA polymerase II to regulate gene expression. In metazoa, Mediator is composed of some 30 distinct subunits. Mediator exists in multiple, functionally distinct forms that share a common core of subunits and can be distinguished by the presence or absence of a kinase module composed of Med12, Med13, Cdk8, and Cyclin C. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
12 Samples
Download data: CEL
Series
Accession:
GSE28715
ID:
200028715
20.

The role of Mediator and Little Elongation Complex in transcription termination

(Submitter supplied) Mediator is a coregulatory complex involved in regulating the transcription of Pol II-dependent genes. Metazoan Mediator subunit MED26 functions as a docking site for the ELL/EAF-containing Super Elongation Complex (SEC) and L ittle Elongation Complex (LEC), which regulate the expression of distinct genes. MED26 helps to recruit SEC to protein-coding genes including c-Myc and LEC to small nuclear RNA (snRNA) genes. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL18573 GPL16791
54 Samples
Download data: BW, CSV
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_674d16d8f363504c2f39a834|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center