U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

RNAseq analysis of alternative splicing in PTBP2 knockout mouse brain

(Submitter supplied) The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. The splicing regulatory proteins PTBP1 and PTBP2 show distinct temporal expression profiles in the developing brain. Neuronal progenitor cells predominantly express PTBP1, whereas developing neurons express high levels of PTBP2, which are subsequently reduced late in neuronal maturation. We show here that PTBP2 and the program of splicing it controls are essential to proper neuronal maturation and survival. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: TXT
Series
Accession:
GSE51733
ID:
200051733
2.

Alternative splicing in PTBP2 knockout mouse brain

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL13185 GPL13112
10 Samples
Download data: CEL, TXT
Series
Accession:
GSE51740
ID:
200051740
3.

Microarray analysis of alternative splicing in PTBP2 knockout mouse brain

(Submitter supplied) The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. The splicing regulatory proteins PTBP1 and PTBP2 show distinct temporal expression profiles in the developing brain. Neuronal progenitor cells predominantly express PTBP1, whereas developing neurons express high levels of PTBP2, which are subsequently reduced late in neuronal maturation. We show here that PTBP2 and the program of splicing it controls are essential to proper neuronal maturation and survival. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13185
6 Samples
Download data: CEL
Series
Accession:
GSE51738
ID:
200051738
4.

Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Other; Expression profiling by array
Platforms:
GPL11002 GPL6193 GPL8940
22 Samples
Download data: CEL
Series
Accession:
GSE47567
ID:
200047567
5.

Wild type vs. Ptbp2 KO mouse embryonic cortex RNA

(Submitter supplied) To assess the requirement of Ptbp2 for alternative processing of RNA in mouse brain
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8940
6 Samples
Download data: CEL
Series
Accession:
GSE47566
ID:
200047566
6.

Wild type vs. Ptbp2 KO mouse E18.5 cortex RNA

(Submitter supplied) To assess the requirement of Ptbp2 for alternative mRNA expression in mouse brain
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6193
8 Samples
Download data: CEL
Series
Accession:
GSE47565
ID:
200047565
7.

Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain [HITS-CLIP]

(Submitter supplied) Two polypyrimidine tract RNA-binding proteins (PTBs), one near-ubiquitously expressed (Ptbp1) and another highly tissue-restricted (Ptbp2), regulate RNA in interrelated but incompletely understood ways. Ptbp1, a splicing regulator, is replaced in the brain and differentiated neuronal cell lines by Ptbp2. To define the roles of Ptbp2 in the nervous system, we generated two independent Ptbp2-null strains, unexpectedly revealing that Ptbp2 is expressed in neuronal progenitors and is essential for postnatal survival. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL11002
8 Samples
Download data: BED, WIG
Series
Accession:
GSE47564
ID:
200047564
8.

Axonogenesis is coordinated by alternative splicing programming and splicing regulator PTBP2

(Submitter supplied) How a neuron acquires an axon is a fundamental question. Piecemeal identification of many axonogenesis-related genes has been done, but coordinated regulation is unknown. Through unbiased transcriptome profiling of immature primary cortical neurons during early axon formation, we discovered an association between axonogenesis and neuron-specific alternative splicing. Known axonogenesis genes exhibit little expression alternation but widespread splicing changes. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
6 Samples
Download data: XLSX
Series
Accession:
GSE124554
ID:
200124554
9.

human iPSC-neurons and human cortex

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
21 Samples
Download data: BW, TAR
Series
Accession:
GSE206661
ID:
200206661
10.

PTBP2 knock-down RNA-seq from human iPSC-neurons

(Submitter supplied) To determine targets of PTBP2-dependent alternative splicing, we depleted PTBP2 in human neurons derived from induced-pluripotent stem cells (iPSC-neurons) using an LNA gapmer and performed RNA-seq on untreated, negative control-treated, and knock-down samples.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
9 Samples
Download data: TAR, TXT
Series
Accession:
GSE206660
ID:
200206660
11.

PTBP2 eCLIP from human iPSC-neurons and human cortex (Brodmann area 4) [CLIP-seq]

(Submitter supplied) To determine direct targets of PTBP2-dependent alternative splicing, we performed CLIP-seq analysis of PTBP2 binding in both human cortical tissue and human neurons derived from induced-pluripotent stem cells (iPSC-neurons), and we combine this with splicing analysis following PTBP2 depletion in iPSC-neurons.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
12 Samples
Download data: BB, BW
Series
Accession:
GSE206650
ID:
200206650
12.

KIS counteracts PTBP2 and regulates alternative exon usage in neurons

(Submitter supplied) Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL23479
6 Samples
Download data: CSV
Series
Accession:
GSE260790
ID:
200260790
13.

Identification of PTBPs RNA binding sites in mouse brain

(Submitter supplied) PTBP1 and PTBP2 are RNA-binding proteins that control RNA processings, including alternative pre-mRNA splicing. The sequential down-regulation of the two proteins is necessary for neuronal maturation. However, their binding substrates in neural tissues have not been examined.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: GFF
Series
Accession:
GSE85165
ID:
200085165
14.

Transcriptome of the mouse neocortices

(Submitter supplied) Derive alternative splicing regulatory networks of PTBP1 and PTBP2
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
7 Samples
Download data: XLSX
Series
Accession:
GSE84803
ID:
200084803
15.

The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL13112
30 Samples
Download data: BED, TXT
Series
Accession:
GSE71179
ID:
200071179
16.

Ptpb1 iCLIP in 46C mESCs and mNPCs

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE71178
ID:
200071178
17.

Splicing analyses of mESCs, mNPCs, and mMNs

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
3 Samples
Download data: TXT
Series
Accession:
GSE71079
ID:
200071079
18.

Splicing analyses of 46C mNPCs following PTBP depletion

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
8 Samples
Download data: TXT
Series
Accession:
GSE70985
ID:
200070985
19.

Gene expression analyses of HB9-GFP D2 mMN cultures following Pbx1 exon 7 inclusion

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data: FPKM_TRACKING
Series
Accession:
GSE70883
ID:
200070883
20.

Attenuation of PTBP2 facilitates fibroblast to neuron conversion by promoting alternative splicing of neuronal genes

(Submitter supplied) The direct conversion of human skin fibroblasts to neurons has a low efficiency and unclear mechanism. Here, we show that the knockdown of PTBP2 (nPTB) significantly enhanced the transdifferentiation induced by ASCL1, MiR124-9/9* and p53 shRNA to generate mostly GABAergic neurons. Longitudinal RNAseq analyses identified the continuous induction of many RNA Splicing Regulators (RSRs). Among these, the knockdown of RBFOX3, which encodes the mature neuronal marker NeuN, significantly abrogated the transdifferentiation. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
36 Samples
Download data: TSV
Series
Accession:
GSE210131
ID:
200210131
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_67490bf843705129cf50a614|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center