U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

RSC Regulates Nucleosome Positioning at Pol II Genes and Density at Pol III Genes

(Submitter supplied) Nucleosomes restrict the access of transcription factors to chromatin. RSC is a SWI/SNF-family chromatin-remodeling complex from yeast that repositions and ejects nucleosomes in vitro. Here, we examined these activities and their importance in vivo. We utilized array-based methods to examine nucleosome occupancy and positioning at more than 200 locations in the genome following the controlled destruction of the catalytic subunit of RSC, Sth1. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL5637
50 Samples
Download data: TXT
Series
Accession:
GSE8862
ID:
200008862
2.

Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination

(Submitter supplied) Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1 and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
6 Samples
Download data: TDF
Series
Accession:
GSE117514
ID:
200117514
3.

Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination

(Submitter supplied) We addressed the roles of four remodeling machines (ISW1, ISW2, CHD1 and RSC) in specifying the chromatin organization.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL19756
32 Samples
Download data: BEDGRAPH
Series
Accession:
GSE73428
ID:
200073428
4.

The RSC complex remodels nucleosomes in transcribed coding sequences and promotes transcription in Saccharomyces cerevisiae

(Submitter supplied) RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that not only RSC binds to nucleosomes in coding sequences (CDSs) but also remodels them to promote transcription. RSC MNase ChIP-seq data revealed that RSC-protected fragments were very heterogenous (~80 bp to 180 bp) compared to the sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC activity promotes accessibility of nucleosomal DNA. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21656
8 Samples
Download data: BW
Series
Accession:
GSE147065
ID:
200147065
5.

Nucleosome mapping in Saccharomyces cerevisiae in different conditions

(Submitter supplied) This experiment aims to map nucleosome positions and comparison of the same in WT NORMAL GROWTH vs WT-NUTRIENT STARVATION/isw1∆2∆ MUTANT/rsc4-∆4 MUTANT in Saccharomyces cerevisiae using a custom designed tiling array on Agilent plat form. The corresponding platform is submitted to GEO under Geo-ID GPL15842. 60mer probes with variable tiling density were designed for all the genes transcribed by RNA polymerase III. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL15842
12 Samples
Download data: TXT
Series
Accession:
GSE39802
ID:
200039802
6.

Genome wide profiling of RNA polymerase III in Saccharomyces cerevisiae

(Submitter supplied) Genome wide mapping of RNA polymearase III binding sites in Saccharomyces cerevisiae under normal growth and nutrient starved condition using ChIP-seq. Chromatin Immuno-precipitation (ChIP) was performed for FLAG tagged version of pol III subunit RPC128 after crosslinking the log-phase cells with formaldehyde. MOCK and IP DNA was sequenced and coverage of pol III was calculated at each base of the genome.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9377
6 Samples
Download data: BEDGRAPH
Series
Accession:
GSE39566
ID:
200039566
7.

The Chromatin Remodelers RSC and ISW1 Display Functional and Chromatin-based Promoter Antagonism

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by genome tiling array; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
21 Samples
Download data: BW, TXT
Series
Accession:
GSE65594
ID:
200065594
8.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [MNase-Seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
2 Samples
Download data: BW
Series
Accession:
GSE65593
ID:
200065593
9.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-seq]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL13272
7 Samples
Download data: BW
Series
Accession:
GSE65592
ID:
200065592
10.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [HybMap microarray]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by genome tiling array
Platform:
GPL19733
6 Samples
Download data: TXT
Series
Accession:
GSE65591
ID:
200065591
11.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [nucleosome occupancy]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
2 Samples
Download data: TXT
Series
Accession:
GSE65590
ID:
200065590
12.

RSC and ISW1 Chromatin Remodelers Display Functional and Chromatin-based Promoter Antagonism [ChIP-chip]

(Submitter supplied) ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4130
4 Samples
Download data: TXT
Series
Accession:
GSE65589
ID:
200065589
13.

RSC Defines MNase-sensitive Promoter Architecture in Yeast

(Submitter supplied) The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently challenged by contradictory reports as to whether a distinct set of wider (≳150 bp) NDRs instead contain unusually unstable Micrococcal Nuclease-sensitive “fragile” particles, thought to be nucleosomal because of their size. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
63 Samples
Download data: BEDGRAPH, PDF
Series
Accession:
GSE116853
ID:
200116853
14.

RSC primes the quiescent genome for hypertranscription upon cell cycle re-entry

(Submitter supplied) We report gene expression patterns and chromatin architecture changes as yeast re-enter the cell cycle from quiescence
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
49 Samples
Download data: BW
Series
Accession:
GSE166789
ID:
200166789
15.

The role of DNA methylation on the organization of the cancer epigenome

(Submitter supplied) We assess global chromatin accessibility following high salt wash
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL11154
2 Samples
Download data: BW
Series
Accession:
GSE64929
ID:
200064929
16.

Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation

(Submitter supplied) Chaperones, nucleosome remodeling complexes and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these co-factors function ubiquitously, and the impact of nucleosome eviction on transcription genome-wide, are poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple co-factors to address these issues for ~200 genes belonging to the Gcn4 transcriptome, of which ~70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
67 Samples
Download data: BW
Series
Accession:
GSE74787
ID:
200074787
17.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL13272
20 Samples
Download data: BED, TXT, WIG
Series
Accession:
GSE29294
ID:
200029294
18.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [RNA_seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13272
6 Samples
Download data: WIG
Series
Accession:
GSE29293
ID:
200029293
19.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [Paired-end Mnase-seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13272
8 Samples
Download data: BED, TXT
Series
Accession:
GSE29292
ID:
200029292
20.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [single-end MNase-seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13272
6 Samples
Download data: BED, TXT
Series
Accession:
GSE29291
ID:
200029291
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_675b1441b80ed315f1189d0b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center