Progressive myositis ossificans- MedGen UID:
- 4698
- •Concept ID:
- C0016037
- •
- Disease or Syndrome
Fibrodysplasia ossificans progressiva (FOP) is characterized by congenital bilateral hallux valgus malformations and early-onset heterotopic ossification, which may be spontaneous or precipitated by trauma including intramuscular vaccinations. Painful, recurrent soft-tissue swellings (flare-ups) may precede localized heterotopic ossification. Heterotopic ossification can occur at any location, but typically affects regions in close proximity to the axial skeleton in the early/mild stages, before progressing to the appendicular skeleton. This can lead to restriction of movement as a result of ossification impacting joint mobility. Problems with swallowing and speaking can occur with ossification affecting the jaw, head, and neck, and restriction of the airway and breathing may lead to thoracic insufficiency syndrome.
Pigmentary pallidal degeneration- MedGen UID:
- 6708
- •Concept ID:
- C0018523
- •
- Disease or Syndrome
Pantothenate kinase-associated neurodegeneration (PKAN) is a type of neurodegeneration with brain iron accumulation (NBIA). The phenotypic spectrum of PKAN includes classic PKAN and atypical PKAN. Classic PKAN is characterized by early-childhood onset of progressive dystonia, dysarthria, rigidity, and choreoathetosis. Pigmentary retinal degeneration is common. Atypical PKAN is characterized by later onset (age >10 years), prominent speech defects, psychiatric disturbances, and more gradual progression of disease.
Metaphyseal chondrodysplasia, Jansen type- MedGen UID:
- 120529
- •Concept ID:
- C0265295
- •
- Disease or Syndrome
The Murk Jansen type of metaphyseal chondrodysplasia is characterized by severe short stature, short bowed limbs, clinodactyly, prominent upper face, and small mandible. Hypercalcemia and hypophosphatemia occur despite the lack of parathyroid abnormalities (summary by Cohen, 2002).
Cholestasis-edema syndrome, Norwegian type- MedGen UID:
- 78658
- •Concept ID:
- C0268314
- •
- Disease or Syndrome
Cholestasis-lymphedema syndrome is a rare genetic disorder characterized by neonatal intrahepatic cholestasis, often lessening and becoming intermittent with age, and severe chronic lymphedema which mainly affects the lower limbs. Patients often present with fat malabsorption leading to failure to thrive, fat soluble vitamin deficiency with bleeding, rickets, and neuropathy. In 25% of cases, cirrhosis occurs during childhood or later in life.
Hyperphosphatasemia with bone disease- MedGen UID:
- 75678
- •Concept ID:
- C0268414
- •
- Disease or Syndrome
Paget disease of bone-5 is an autosomal recessive, juvenile-onset form of Paget disease, a disorder of the skeleton resulting from abnormal bone resorption and formation. Clinical manifestations include short stature, progressive long bone deformities, fractures, vertebral collapse, skull enlargement, and hyperostosis with progressive deafness. There is phenotypic variability, with some patients presenting in infancy, while others present later in childhood (summary by Naot et al., 2014).
For discussion of genetic heterogeneity of Paget disease of bone, see 167250.
Primary hypomagnesemia- MedGen UID:
- 120640
- •Concept ID:
- C0268448
- •
- Disease or Syndrome
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is a progressive renal disorder characterized by excessive urinary Ca(2+) and Mg(2+) excretion. There is progressive loss of kidney function, and in about 50% of cases, the need for renal replacement therapy arises as early as the second decade of life (summary by Muller et al., 2006). Amelogenesis imperfecta may also be present in some patients (Bardet et al., 2016).
A similar disorder with renal magnesium wasting, renal failure, and nephrocalcinosis (HOMG5; 248190) is caused by mutations in another tight-junction gene, CLDN19 (610036), and is distinguished by the association of severe ocular involvement.
For a discussion of phenotypic and genetic heterogeneity of familial hypomagnesemia, see HOMG1 (602014).
Vitamin D-dependent rickets, type 1- MedGen UID:
- 124344
- •Concept ID:
- C0268689
- •
- Disease or Syndrome
Vitamin D-dependent rickets is a disorder of bone development that leads to softening and weakening of the bones (rickets). There are several forms of the condition that are distinguished primarily by their genetic causes: type 1A (VDDR1A), type 1B (VDDR1B), and type 2A (VDDR2A). There is also evidence of a very rare form of the condition, called type 2B (VDDR2B), although not much is known about this form.\n\nThe signs and symptoms of vitamin D-dependent rickets begin within months after birth, and most are the same for all types of the condition. The weak bones often cause bone pain and delayed growth and have a tendency to fracture. When affected children begin to walk, they may develop abnormally curved (bowed) legs because the bones are too weak to bear weight. Impaired bone development also results in widening of the areas near the ends of bones where new bone forms (metaphyses), especially in the knees, wrists, and ribs. Some people with vitamin D-dependent rickets have dental abnormalities such as thin tooth enamel and frequent cavities. Poor muscle tone (hypotonia) and muscle weakness are also common in this condition, and some affected individuals develop seizures.\n\nHair loss (alopecia) can occur in VDDR2A, although not everyone with this form of the condition has alopecia. Affected individuals can have sparse or patchy hair or no hair at all on their heads. Some affected individuals are missing body hair as well.\n\nIn vitamin D-dependent rickets, there is an imbalance of certain substances in the blood. An early sign in all types of the condition is low levels of the mineral calcium (hypocalcemia), which is essential for the normal formation of bones and teeth. Affected individuals also develop high levels of a hormone involved in regulating calcium levels called parathyroid hormone (PTH), which leads to a condition called secondary hyperparathyroidism. Low levels of a mineral called phosphate (hypophosphatemia) also occur in affected individuals. Vitamin D-dependent rickets types 1 and 2 can be grouped by blood levels of a hormone called calcitriol, which is the active form of vitamin D; individuals with VDDR1A and VDDR1B have abnormally low levels of calcitriol and individuals with VDDR2A and VDDR2B have abnormally high levels.
Autosomal dominant hypophosphatemic rickets- MedGen UID:
- 83346
- •Concept ID:
- C0342642
- •
- Disease or Syndrome
Autosomal dominant hypophosphatemic rickets (ADHR) is characterized by isolated renal phosphate wasting, hypophosphatemia, and inappropriately normal 1,25-dihydroxyvitamin D3 (calcitriol) levels. Patients frequently present with bone pain, rickets, and tooth abscesses. In contrast to X-linked dominant hypophosphatemic rickets (XLH; 307800), ADHR shows incomplete penetrance, variable age at onset (childhood to adult), and resolution of the phosphate-wasting defect in rare cases (Econs et al., 1997).
See also hypophosphatemic bone disease (146350).
Genetic Heterogeneity of Hypophosphatemic Rickets
Other forms of hypophosphatemic rickets include autosomal recessive forms, i.e., ARHR1 (241520), caused by mutation in the DMP1 gene (600980) on chromosome 4q21, and ARHR2 (613312), caused by mutation in the ENPP1 gene (173335) on chromosome 6q23. An X-linked dominant form (XLHR; 307800) is caused by mutation in the PHEX gene (300550), and an X-linked recessive form (300554) is caused by mutation in the CLCN5 gene (300008).
Clinical Variability of Hypophosphatemic Rickets
Hypophosphatemic rickets can be caused by disorders of vitamin D metabolism or action (see VDDR1A, 264700). A form of hypophosphatemic rickets with hypercalciuria (HHRH; 241530) is caused by mutation in the SLC34A3 gene (609826), and there is evidence that a form of hypophosphatemic rickets with hyperparathyroidism (612089) may be caused by a translocation that results in an increase in alpha-klotho levels (KLOTHO; 604824).
Vitamin D-dependent rickets type II with alopecia- MedGen UID:
- 90989
- •Concept ID:
- C0342646
- •
- Disease or Syndrome
Vitamin D-dependent rickets type 2A (VDDR2A) is caused by a defect in the vitamin D receptor gene. This defect leads to an increase in the circulating ligand, 1,25-dihydroxyvitamin D3. Most patients have total alopecia in addition to rickets.
VDDR2B (600785) is a form of vitamin D-dependent rickets with a phenotype similar to VDDR2A but a normal vitamin D receptor, in which end-organ resistance to vitamin D has been shown to be caused by a nuclear ribonucleoprotein that interferes with the vitamin D receptor-DNA interaction.
For a general phenotypic description and a discussion of genetic heterogeneity of rickets due to disorders in vitamin D metabolism or action, see vitamin D-dependent rickets type 1A (VDDR1A; 264700).
Hyperphosphatasemia tarda- MedGen UID:
- 98484
- •Concept ID:
- C0432272
- •
- Disease or Syndrome
SOST-related sclerosing bone dysplasias include sclerosteosis and van Buchem disease, both disorders of progressive bone overgrowth due to increased bone formation. The major clinical features of sclerosteosis are progressive skeletal overgrowth, most pronounced in the skull and mandible, and variable syndactyly, usually of the second (index) and third (middle) fingers. Affected individuals appear normal at birth except for syndactyly. Facial distortion due to bossing of the forehead and mandibular overgrowth is seen in nearly all individuals and becomes apparent in early childhood with progression into adulthood. Hyperostosis of the skull results in narrowing of the foramina, causing entrapment of the seventh cranial nerve (leading to facial palsy) with other, less common nerve entrapment syndromes including visual loss (2nd cranial nerve), neuralgia or anosmia (5th cranial nerve), and sensory hearing loss (8th cranial nerve). In sclerosteosis, hyperostosis of the calvarium reduces intracranial volume, increasing the risk for potentially lethal elevation of intracranial pressure. Survival of individuals with sclerosteosis into old age is unusual, but not unprecedented. The manifestations of van Buchem disease are generally milder than sclerosteosis and syndactyly is absent; life span appears to be normal.
Familial expansile osteolysis- MedGen UID:
- 96593
- •Concept ID:
- C0432292
- •
- Congenital Abnormality
Familial expansile osteolysis is an autosomal dominant bone dysplasia characterized by increased bone remodeling with osteolytic lesions mainly affecting the appendicular skeleton. There is medullary and cortical expansion of the bone without sclerosis, leading to painful and disabling deformities and tendency to pathologic fracture. Clinical features include onset of conductive hearing loss in childhood, premature loss of teeth, and variably increased serum alkaline phosphatase (summary by Palenzuela et al., 2002 and Elahi et al., 2007).
Familial X-linked hypophosphatemic vitamin D refractory rickets- MedGen UID:
- 196551
- •Concept ID:
- C0733682
- •
- Disease or Syndrome
The phenotypic spectrum of X-linked hypophosphatemia (XLH) ranges from isolated hypophosphatemia to severe lower-extremity bowing. XLH frequently manifests in the first two years of life when lower-extremity bowing becomes evident with the onset of weight bearing; however, it sometimes is not manifest until adulthood, as previously unevaluated short stature. In adults, enthesopathy (calcification of the tendons, ligaments, and joint capsules) associated with joint pain and impaired mobility may be the initial presenting complaint. Persons with XLH are prone to spontaneous dental abscesses; sensorineural hearing loss has also been reported.
Reynolds syndrome- MedGen UID:
- 450547
- •Concept ID:
- C0748397
- •
- Disease or Syndrome
An autoimmune disorder characterized by the association of primary biliary cirrhosis with limited cutaneous systemic sclerosis. Onset occurs between 30-65 years. Occurs sporadically, but rare familial cases with an unknown inheritance pattern have been observed. There is no cure and management is mainly supportive.
Polycystic liver disease 1- MedGen UID:
- 165781
- •Concept ID:
- C0887850
- •
- Congenital Abnormality
Polycystic liver disease-1 is an autosomal dominant condition characterized by the presence of multiple liver cysts of biliary epithelial origin. Although the clinical presentation and histologic features of polycystic liver disease in the presence or absence of autosomal dominant polycystic kidney disease (see, e.g., PKD1, 173900) are indistinguishable, PCLD1 is a genetically distinct form of isolated polycystic liver disease (summary by Reynolds et al., 2000). A subset of patients (28-35%) may develop kidney cysts that are usually incidental findings and do not result in clinically significant renal disease (review by Cnossen and Drenth, 2014).
Genetic Heterogeneity of Polycystic Liver Disease
See also PCLD2 (617004), caused by mutation in the SEC63 gene (608648) on chromosome 6q21; PCLD3 (617874), caused by mutation in the ALG8 gene (608103) on chromosome 11p; and PCLD4 (617875), causes by mutation in the LRP5 gene (603506) on chromosome 11q13.
Hyperparathyroidism, transient neonatal- MedGen UID:
- 722059
- •Concept ID:
- C1300287
- •
- Disease or Syndrome
Transient neonatal hyperparathyroidism (HRPTTN) is characterized by interference with placental maternal-fetal calcium transport, causing fetal calcium deficiency resulting in hyperparathyroidism and metabolic bone disease. Because 80% of calcium is transferred during the third trimester, abnormalities may not be detected on second-trimester ultrasounds. Affected infants present at birth with prenatal fractures, shortened ribs, and bowing of long bones, as well as respiratory and feeding difficulties. Postnatal recovery or improvement is observed once calcium is provided orally, with most patients showing complete resolution of skeletal abnormalities by 2 years of age (Suzuki et al., 2018).
Vitamin D hydroxylation-deficient rickets, type 1B- MedGen UID:
- 374020
- •Concept ID:
- C1838657
- •
- Disease or Syndrome
Vitamin D hydroxylation-deficient rickets type 1B (VDDR1B) is caused by a defect in vitamin D 25-hydroxylation (Molin et al., 2017). The major function of vitamin D is to maintain calcium and phosphate levels in the normal range to support metabolic functions, neuromuscular transmission, and bone mineralization. Disorders of vitamin D metabolism or action lead to defective bone mineralization and clinical features including intestinal malabsorption of calcium, hypocalcemia, secondary hyperparathyroidism, increased renal clearance of phosphorus, and hypophosphatemia. The combination of hypocalcemia and hypophosphatemia causes impaired mineralization of bone that results in rickets and osteomalacia (summary by Liberman and Marx, 2001).
Rickets can occur because of inadequate dietary intake or sun exposure or because of genetic disorders. Vitamin D3 (cholecalciferol) is taken in the diet or synthesized in the skin from 7-dehydrocholesterol by ultraviolet irradiation. For vitamin D to be active, it needs to be converted to its active form, 1,25-dihydroxyvitamin D3. Vitamin D is transported in the blood by the vitamin D binding protein (DBP; 139200) to the liver, where vitamin D 25-hydroxylase (CYP2R1; 608713) is the key enzyme for 25-hydroxylation. Vitamin D 25(OH)D3, the major circulating form of vitamin D, is then transported to the kidney, where 25(OH)D3 is hydroxylated at the position of carbon 1 of the A ring, resulting in the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (summary by Christakos et al., 2010).
Eiken syndrome- MedGen UID:
- 325097
- •Concept ID:
- C1838779
- •
- Congenital Abnormality
Eiken syndrome (EKNS) is an autosomal recessive skeletal dysplasia characterized by delayed ossification of bones, epiphyseal dysplasia, and bone remodeling abnormalities. Type A1 brachydactyly (see 112500), supernumerary epiphyses of proximal phalanges and metacarpals, and failure of eruption of primary teeth have also been described. Defining radiologic features include delayed ossification of epiphyses and primary ossification centers of short tubular bones, modeling abnormalities of tubular bones, and angel-shaped phalanges (Jacob et al., 2019).
See 603740 for a disorder with similar radiologic features.
Lathosterolosis- MedGen UID:
- 375885
- •Concept ID:
- C1846421
- •
- Disease or Syndrome
Lathosterolosis (LATHOS) is an autosomal recessive disorder characterized by a recognizable pattern of multiple congenital anomalies involving axial and appendicular skeleton, liver, central nervous and urogenital systems, and lysosomal storage. It is caused by a defect of cholesterol biosynthesis due to sterol C5-desaturase deficiency (summary by Rossi et al., 2007).
Primary intraosseous venous malformation- MedGen UID:
- 376071
- •Concept ID:
- C1847197
- •
- Disease or Syndrome
Primary intraosseous vascular malformation (VMPI), previously called intraosseous hemangioma, is a rare malformation that usually involves the vertebral column and the skull. The most commonly affected bones in the skull are the mandible and the maxilla, and life-threatening bleeding after a simple tooth extraction is frequent (Vargel et al., 2002).
CHIME syndrome- MedGen UID:
- 341214
- •Concept ID:
- C1848392
- •
- Disease or Syndrome
CHIME syndrome, also known as Zunich neuroectodermal syndrome, is an extremely rare autosomal recessive multisystem disorder clinically characterized by colobomas, congenital heart defects, migratory ichthyosiform dermatosis, mental retardation, and ear anomalies (CHIME). Other clinical features include distinctive facial features, abnormal growth, genitourinary abnormalities, seizures, and feeding difficulties (summary by Ng et al., 2012). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Lethal osteosclerotic bone dysplasia- MedGen UID:
- 342416
- •Concept ID:
- C1850106
- •
- Disease or Syndrome
Raine syndrome (RNS) is a neonatal osteosclerotic bone dysplasia of early and aggressive onset that usually results in death within the first few weeks of life, although there have been some reports of survival into childhood. Radiographic studies show a generalized increase in the density of all bones and a marked increase in the ossification of the skull. The increased ossification of the basal structures of the skull and facial bones underlies the characteristic facial features, which include narrow prominent forehead, proptosis, depressed nasal bridge, and midface hypoplasia. Periosteal bone formation is also characteristic of this disorder and differentiates it from osteopetrosis and other known lethal and nonlethal osteosclerotic bone dysplasias. The periosteal bone formation typically extends along the diaphysis of long bones adjacent to areas of cellular soft tissue (summary by Simpson et al., 2009). Some patients survive infancy (Simpson et al., 2009; Fradin et al., 2011).
Autosomal recessive osteopetrosis 1- MedGen UID:
- 376708
- •Concept ID:
- C1850127
- •
- Disease or Syndrome
Osteopetrosis (OPT) is a life-threatening disease caused by subnormal osteoclast function, with an incidence of 1 in 250,000 births. The disease usually manifests in the first few months of life with macrocephaly and frontal bossing, resulting in a characteristic facial appearance. Defective bone remodeling of the skull results in choanal stenosis with concomitant respiratory problems and feeding difficulties, which are the first clinical manifestation of disease. The expanding bone encroaches on neural foramina, leading to blindness, deafness, and facial palsy. Complete visual loss invariably occurs in all untreated patients, and hearing loss is estimated to affect 78% of patients with OPT. Tooth eruption defects and severe dental caries are common. Calcium feedback hemostasis is impaired, and children with OPT are at risk of developing hypocalcemia with attendant tetanic seizures and secondary hyperparathyroidism. The most severe complication of OPT, limiting survival, is bone marrow insufficiency. The abnormal expansion of cortical and trabecular bone physically limits the availability of medullary space for hematopoietic activity, leading to life-threatening cytopenia and secondary expansion of extramedullary hematopoiesis at sites such as the liver and spleen (summary by Aker et al., 2012).
Genetic Heterogeneity of Autosomal Recessive Osteopetrosis
Other forms of autosomal recessive infantile malignant osteopetrosis include OPTB4 (611490), which is caused by mutation in the CLCN7 gene (602727) on chromosome 16p13, and OPTB5 (259720), which is caused by mutation in the OSTM1 gene (607649) on chromosome 6q21. A milder, osteoclast-poor form of autosomal recessive osteopetrosis (OPTB2; 259710) is caused by mutation in the TNFSF11 gene (602642) on chromosome 13q14, an intermediate form (OPTB6; 611497) is caused by mutation in the PLEKHM1 gene (611466) on chromosome 17q21, and a severe osteoclast-poor form associated with hypogammaglobulinemia (OPTB7; 612301) is caused by mutation in the TNFRSF11A gene (603499) on chromosome 18q21. Another form of autosomal recessive osteopetrosis (OPTB8; 615085) is caused by mutation in the SNX10 gene (614780) on chromosome 7p15. A form of autosomal recessive osteopetrosis associated with renal tubular acidosis (OPTB3; 259730) is caused by mutation in the CA2 gene (611492) on chromosome 8q21. OPTB9 (620366) is caused by mutation in the SLC4A2 gene (109280) on chromosome 7q36.
Autosomal dominant forms of osteopetrosis are more benign (see OPTA1, 607634).
Calvarial doughnut lesions-bone fragility syndrome- MedGen UID:
- 377572
- •Concept ID:
- C1852022
- •
- Disease or Syndrome
Calvarial doughnut lesions with bone fragility (CDL) is characterized by low bone mineral density, multiple spinal and peripheral fractures beginning in childhood, and sclerotic doughnut-shaped lesions in the cranial bones. Some more severely affected individuals exhibit neonatal onset of fractures, severe short stature, marked cranial sclerosis, and spondylometaphyseal dysplasia (CDLSMD) (Pekkinen et al., 2019).
Craniometaphyseal dysplasia, autosomal dominant- MedGen UID:
- 338945
- •Concept ID:
- C1852502
- •
- Disease or Syndrome
Autosomal dominant craniometaphyseal dysplasia (designated AD-CMD in this review) is characterized by progressive diffuse hyperostosis of cranial bones evident clinically as wide nasal bridge, paranasal bossing, widely spaced eyes with an increase in bizygomatic width, and prominent mandible. Development of dentition may be delayed and teeth may fail to erupt as a result of hyperostosis and sclerosis of alveolar bone. Progressive thickening of craniofacial bones continues throughout life, often resulting in narrowing of the cranial foramina, including the foramen magnum. If untreated, compression of cranial nerves can lead to disabling conditions such as facial palsy, blindness, or deafness (conductive and/or sensorineural hearing loss). In individuals with typical uncomplicated AD-CMD life expectancy is normal; in those with severe AD-CMD life expectancy can be reduced as a result of compression of the foramen magnum.
Autosomal recessive hypophosphatemic bone disease- MedGen UID:
- 501133
- •Concept ID:
- C1853271
- •
- Disease or Syndrome
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterized by the presence of hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histologic evidence of rickets, limb deformities, muscle weakness, and bone pain. HHRH is distinct from other forms of hypophosphatemic rickets in that affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption (summary by Bergwitz et al., 2006).
Paget disease of bone 4- MedGen UID:
- 339991
- •Concept ID:
- C1853473
- •
- Disease or Syndrome
Neonatal intrahepatic cholestasis due to citrin deficiency- MedGen UID:
- 340091
- •Concept ID:
- C1853942
- •
- Disease or Syndrome
Citrin deficiency can manifest in newborns or infants as neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), in older children as failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD), and in adults as recurrent hyperammonemia with neuropsychiatric symptoms in citrullinemia type II (CTLN2). Often citrin deficiency is characterized by strong preference for protein-rich and/or lipid-rich foods and aversion to carbohydrate-rich foods. NICCD. Children younger than age one year have a history of low birth weight with growth restriction and transient intrahepatic cholestasis, hepatomegaly, diffuse fatty liver, and parenchymal cellular infiltration associated with hepatic fibrosis, variable liver dysfunction, hypoproteinemia, decreased coagulation factors, hemolytic anemia, and/or hypoglycemia. NICCD is generally not severe and symptoms often resolve by age one year with appropriate treatment, although liver transplantation has been required in rare instances. FTTDCD. Beyond age one year, many children with citrin deficiency develop a protein-rich and/or lipid-rich food preference and aversion to carbohydrate-rich foods. Clinical abnormalities may include growth restriction, hypoglycemia, pancreatitis, severe fatigue, anorexia, and impaired quality of life. Laboratory changes are dyslipidemia, increased lactate-to-pyruvate ratio, higher levels of urinary oxidative stress markers, and considerable deviation in tricarboxylic acid (TCA) cycle metabolites. One or more decades later, some individuals with NICCD or FTTDCD develop CTLN2. CTLN2. Presentation is sudden and usually between ages 20 and 50 years. Manifestations are recurrent hyperammonemia with neuropsychiatric symptoms including nocturnal delirium, aggression, irritability, hyperactivity, delusions, disorientation, restlessness, drowsiness, loss of memory, flapping tremor, convulsive seizures, and coma. Symptoms are often provoked by alcohol and sugar intake, medication, and/or surgery. Affected individuals may or may not have a prior history of NICCD or FTTDCD.
Congenital bile acid synthesis defect 2- MedGen UID:
- 383840
- •Concept ID:
- C1856127
- •
- Disease or Syndrome
Congenital bile acid synthesis defect type 2 is a disorder characterized by cholestasis, a condition that impairs the production and release of a digestive fluid called bile from liver cells. Bile is used during digestion to absorb fats and fat-soluble vitamins, such as vitamins A, D, E, and K. People with congenital bile acid synthesis defect type 2 cannot produce (synthesize) bile acids, which are a component of bile that stimulate bile flow and help it absorb fats and fat-soluble vitamins. As a result, an abnormal form of bile is produced.\n\nThe signs and symptoms of congenital bile acid synthesis defect type 2 often develop in infancy. Affected infants usually have a failure to gain weight and grow at the expected rate (failure to thrive) and yellowing of the skin and eyes (jaundice) due to impaired bile flow and a buildup of partially formed bile. Excess fat in the feces (steatorrhea) is another feature of congenital bile acid synthesis defect type 2. As the condition progresses, affected individuals can develop liver abnormalities including inflammation or chronic liver disease (cirrhosis). Some individuals with congenital bile acid synthesis defect type 2 cannot absorb certain fat-soluble vitamins, which can result in softening and weakening of the bones (rickets) or problems with blood clotting that lead to prolonged bleeding.\n\nIf left untreated, congenital bile acid synthesis defect type 2 typically leads to cirrhosis and death in childhood.
Benign recurrent intrahepatic cholestasis type 2- MedGen UID:
- 435857
- •Concept ID:
- C2608083
- •
- Disease or Syndrome
The phenotypic spectrum of ATP8B1 deficiency ranges from severe through moderate to mild. Severe ATP8B1 deficiency is characterized by infantile-onset cholestasis that progresses to cirrhosis, hepatic failure, and early death. Although mild-to-moderate ATP8B1 deficiency initially was thought to involve intermittent symptomatic cholestasis with a lack of hepatic fibrosis, it is now known that hepatic fibrosis may be present early in the disease course. Furthermore, in some persons with ATP8B1 deficiency the clinical findings can span the phenotypic spectrum, shifting over time from the mild end of the spectrum (episodic cholestasis) to the severe end of the spectrum (persistent cholestasis). Sensorineural hearing loss (SNHL) is common across the phenotypic spectrum.
Low phospholipid associated cholelithiasis- MedGen UID:
- 760527
- •Concept ID:
- C2609268
- •
- Disease or Syndrome
In general, gallbladder disease (GBD) is one of the major digestive diseases. GBD prevalence is particularly high in some minority populations in the United States, including Native and Mexican Americans. Gallstones composed of cholesterol (cholelithiasis) are the common manifestations of GBD in western countries, including the United States. Most people with gallstones remain asymptomatic through their lifetimes; however, it is estimated that approximately 10 to 50% of individuals eventually develop symptoms. Significant risk factors associated with GBD are age, female sex, obesity (especially central obesity), lipids, diet, parity, type 2 diabetes (125853), medications, and Mexican American ethnicity. GBD appears to be strongly related to the metabolic syndrome (605552) and/or its major components, such as hyperinsulinism, dyslipidemia, and abdominal adiposity (Boland et al., 2002; Tsai et al., 2004). Infection, specifically by Helicobacter, has been implicated in cholelithiasis and cholecystitis (Silva et al., 2003; Maurer et al., 2005).
Low phospholipid-associated cholelithiasis is a specific form of gallbladder disease characterized by young-adult onset of chronic cholestasis with intrahepatic sludge and cholesterol cholelithiasis. Affected individuals have recurrence of the disorder after cholecystectomy and show a favorable response to treatment with ursodeoxycholic acid (UDCA) (summary by Pasmant et al., 2012).
Mutation in the ABCB4 gene can cause a spectrum of related diseases, including the more severe progressive familial intrahepatic cholestasis-3 (PFIC3; 602347), intrahepatic cholestasis of pregnancy-3 (ICP3; 614972), andoral contraceptive-induced cholestasis (OCIC; see 614972).
Genetic Heterogeneity of Gallbladder Disease
Two major susceptibility loci for symptomatic gallbladder disease have been identified on chromosome 1p in Mexican Americans (GBD2, 609918; GBD3, 609919). In addition, variations in the ABCG8 gene (605460) on chromosome 2p21 confer susceptibility to gallbladder disease (GBD4; 611465).
Craniodiaphyseal dysplasia, autosomal dominant- MedGen UID:
- 382678
- •Concept ID:
- C2675746
- •
- Disease or Syndrome
Craniodiaphyseal dysplasia (CDD) is a severe bone dysplasia characterized by massive generalized hyperostosis and sclerosis, especially involving the skull and facial bones. Progressive bony encroachment upon cranial foramina leads to severe neurologic impairment in childhood (summary by Brueton and Winter, 1990). The sclerosis is so severe that the resulting facial distortion is referred to as 'leontiasis ossea' (leonine facies), and the bone deposition results in progressive stenosis of craniofacial foramina (summary by Kim et al., 2011).
Vitamin D-dependent rickets, type 2B- MedGen UID:
- 411667
- •Concept ID:
- C2748783
- •
- Disease or Syndrome
Vitamin D-dependent rickets type 2B with normal vitamin D receptor (VDDR2B) is an unusual form of rickets due to abnormal expression of a hormone response element-binding protein that interferes with the normal function of the vitamin D receptor.
Vitamin D-dependent rickets type 2A (VDDR2A) is caused by mutation in the vitamin D receptor gene (VDR; 601769), and most patients have alopecia in addition to rickets.
For a general phenotypic description and a discussion of genetic heterogeneity of rickets due to disorders in vitamin D metabolism or action, see vitamin D-dependent rickets type 1A (VDDR1A; 264700).
Hypophosphatemic rickets, autosomal recessive, 2- MedGen UID:
- 442380
- •Concept ID:
- C2750078
- •
- Disease or Syndrome
Researchers have described several forms of hereditary hypophosphatemic rickets, which are distinguished by their pattern of inheritance and genetic cause. The most common form of the disorder is known as X-linked hypophosphatemic rickets (XLH). It has an X-linked dominant pattern of inheritance. X-linked recessive, autosomal dominant, and autosomal recessive forms of the disorder are much rarer.\n\nAnother rare type of the disorder is known as hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In addition to hypophosphatemia, this condition is characterized by the excretion of high levels of calcium in the urine (hypercalciuria).\n\nOther signs and symptoms of hereditary hypophosphatemic rickets can include premature fusion of the skull bones (craniosynostosis) and dental abnormalities. The disorder may also cause abnormal bone growth where ligaments and tendons attach to joints (enthesopathy). In adults, hypophosphatemia is characterized by a softening of the bones known as osteomalacia.\n\nIn most cases, the signs and symptoms of hereditary hypophosphatemic rickets begin in early childhood. The features of the disorder vary widely, even among affected members of the same family. Mildly affected individuals may have hypophosphatemia without other signs and symptoms. More severely affected children experience slow growth and are shorter than their peers. They develop bone abnormalities that can interfere with movement and cause bone pain. The most noticeable of these abnormalities are bowed legs or knock knees. These abnormalities become apparent with weight-bearing activities such as walking. If untreated, they tend to worsen with time.\n\nHereditary hypophosphatemic rickets is a disorder related to low levels of phosphate in the blood (hypophosphatemia). Phosphate is a mineral that is essential for the normal formation of bones and teeth.
Polycystic kidney disease 2- MedGen UID:
- 442699
- •Concept ID:
- C2751306
- •
- Disease or Syndrome
Autosomal dominant polycystic kidney disease (ADPKD) is generally a late-onset multisystem disorder characterized by bilateral kidney cysts, liver cysts, and an increased risk of intracranial aneurysms. Other manifestations include: cysts in the pancreas, seminal vesicles, and arachnoid membrane; dilatation of the aortic root and dissection of the thoracic aorta; mitral valve prolapse; and abdominal wall hernias. Kidney manifestations include early-onset hypertension, kidney pain, and kidney insufficiency. Approximately 50% of individuals with ADPKD have end-stage kidney disease (ESKD) by age 60 years. The prevalence of liver cysts increases with age and occasionally results in clinically significant severe polycystic liver disease (PLD), most often in females. Overall, the prevalence of intracranial aneurysms is fivefold higher than in the general population and further increased in those with a positive family history of aneurysms or subarachnoid hemorrhage. There is substantial variability in the severity of kidney disease and other extra-kidney manifestations.
Camurati-Engelmann disease, type 2- MedGen UID:
- 419470
- •Concept ID:
- C2931683
- •
- Disease or Syndrome
Camurati-Engelmann Disease not associated with TGFB1. This is an n-of-1 use case where only one patient or family has been described with this disorder.
Congenital bile acid synthesis defect 3- MedGen UID:
- 462497
- •Concept ID:
- C3151147
- •
- Disease or Syndrome
Congenital bile acid synthesis defect-3 (CBAS3) is an autosomal recessive disorder characterized by prolonged jaundice after birth, hepatomegaly, conjugated hyperbilirubinemia, elevations in characteristic abnormal bile acids, and progressive intrahepatic cholestasis with liver fibrosis (summary by Setchell et al., 1998 and Ueki et al., 2008).
For a general phenotypic description and a discussion of genetic heterogeneity of congenital bile acid synthesis defects, see 607765.
Osteogenesis imperfecta type 11- MedGen UID:
- 462568
- •Concept ID:
- C3151218
- •
- Disease or Syndrome
Osteogenesis imperfecta (OI) comprises a group of connective tissue disorders characterized by bone fragility and low bone mass. The disorder is clinically and genetically heterogeneous. OI type XI is an autosomal recessive form of OI (summary by Alanay et al., 2010).
Multiple congenital anomalies-hypotonia-seizures syndrome 2- MedGen UID:
- 477139
- •Concept ID:
- C3275508
- •
- Disease or Syndrome
Multiple congenital anomalies-hypotonia-seizures syndrome-2 (MCAHS2) is an X-linked recessive neurodevelopmental disorder characterized by dysmorphic features, neonatal hypotonia, early-onset myoclonic seizures, and variable congenital anomalies involving the central nervous, cardiac, and urinary systems. Some affected individuals die in infancy (summary by Johnston et al., 2012). The phenotype shows clinical variability with regard to severity and extraneurologic features. However, most patients present in infancy with early-onset epileptic encephalopathy associated with developmental arrest and subsequent severe neurologic disability; these features are consistent with a form of developmental and epileptic encephalopathy (DEE) (summary by Belet et al., 2014, Kato et al., 2014). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of MCAHS, see MCAHS1 (614080).
For a discussion of nomenclature and genetic heterogeneity of DEE, see 308350.
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Osteogenesis imperfecta type 6- MedGen UID:
- 481194
- •Concept ID:
- C3279564
- •
- Disease or Syndrome
Osteogenesis imperfecta (OI) comprises a group of connective tissue disorders characterized by bone fragility and low bone mass. The disorder is clinically and genetically heterogeneous. Osteogenesis imperfecta type VI is a severe autosomal recessive form of the disorder (Glorieux et al., 2002; Becker et al., 2011).
Hyperphosphatasia with intellectual disability syndrome 3- MedGen UID:
- 481783
- •Concept ID:
- C3280153
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-3 (HPMRS3) is an autosomal recessive disorder characterized by severe intellectual disability, hypotonia with poor motor development, poor speech, and increased serum alkaline phosphatase (summary by Hansen et al., 2013). However, the severity of the disorder can also vary to include more mild intellectual impairment (Krawitz et al., 2013). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of HPMRS, see HPMRS1 (239300).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Progressive familial intrahepatic cholestasis type 2- MedGen UID:
- 483742
- •Concept ID:
- C3489789
- •
- Disease or Syndrome
The phenotypic spectrum of ATP8B1 deficiency ranges from severe through moderate to mild. Severe ATP8B1 deficiency is characterized by infantile-onset cholestasis that progresses to cirrhosis, hepatic failure, and early death. Although mild-to-moderate ATP8B1 deficiency initially was thought to involve intermittent symptomatic cholestasis with a lack of hepatic fibrosis, it is now known that hepatic fibrosis may be present early in the disease course. Furthermore, in some persons with ATP8B1 deficiency the clinical findings can span the phenotypic spectrum, shifting over time from the mild end of the spectrum (episodic cholestasis) to the severe end of the spectrum (persistent cholestasis). Sensorineural hearing loss (SNHL) is common across the phenotypic spectrum.
Fanconi-Bickel syndrome- MedGen UID:
- 501176
- •Concept ID:
- C3495427
- •
- Disease or Syndrome
Fanconi-Bickel syndrome is a rare but well-defined clinical entity, inherited in an autosomal recessive mode and characterized by hepatorenal glycogen accumulation, proximal renal tubular dysfunction, and impaired utilization of glucose and galactose (Manz et al., 1987). Because no underlying enzymatic defect in carbohydrate metabolism had been identified and because metabolism of both glucose and galactose is impaired, a primary defect of monosaccharide transport across the membranes had been suggested (Berry et al., 1995; Fellers et al., 1967; Manz et al., 1987; Odievre, 1966).
Use of the term glycogenosis type XI introduced by Hug (1987) is to be discouraged because glycogen accumulation is not due to the proposed functional defect of phosphoglucomutase, an essential enzyme in the common degradative pathways of both glycogen and galactose, but is secondary to nonfunctional glucose transport.
Mitochondrial complex III deficiency nuclear type 1- MedGen UID:
- 762097
- •Concept ID:
- C3541471
- •
- Disease or Syndrome
Autosomal recessive mitochondrial complex III deficiency is a severe multisystem disorder with onset at birth of lactic acidosis, hypotonia, hypoglycemia, failure to thrive, encephalopathy, and delayed psychomotor development. Visceral involvement, including hepatopathy and renal tubulopathy, may also occur. Many patients die in early childhood, but some may show longer survival (de Lonlay et al., 2001; De Meirleir et al., 2003).
Genetic Heterogeneity of Mitochondrial Complex III Deficiency
Mitochondrial complex III deficiency can be caused by mutation in several different nuclear-encoded genes. See MC3DN2 (615157), caused by mutation in the TTC19 gene (613814) on chromosome 17p12; MC3DN3 (615158), caused by mutation in the UQCRB gene (191330) on chromosome 8q; MC3DN4 (615159), caused by mutation in the UQCRQ gene (612080) on chromosome 5q31; MC3DN5 (615160), caused by mutation in the UQCRC2 gene (191329) on chromosome 16p12; MC3DN6 (615453), caused by mutation in the CYC1 gene (123980) on chromosome 8q24; MC3DN7 (615824), caused by mutation in the UQCC2 gene (614461) on chromosome 6p21; MC3DN8 (615838), caused by mutation in the LYRM7 gene (615831) on chromosome 5q23; MC3DN9 (616111), caused by mutation in the UQCC3 gene (616097) on chromosome 11q12; and MC3DN10 (618775), caused by mutation in the UQCRFS1 gene (191327) on chromosome 19q12.
See also MTYCB (516020) for a discussion of a milder phenotype associated with isolated mitochondrial complex III deficiency and mutations in a mitochondrial-encoded gene.
COG6-congenital disorder of glycosylation- MedGen UID:
- 766144
- •Concept ID:
- C3553230
- •
- Disease or Syndrome
CDG2L is an autosomal recessive multisystem disorder apparent from birth or early infancy. It is characterized by poor growth, gastrointestinal and liver abnormalities, delayed psychomotor development, hypotonia, recurrent infections, hematologic abnormalities, increased bleeding tendency, and hyperhidrosis or hyperkeratosis. More variable features include nonspecific dysmorphic facial features and cardiac septal defects. The disorder often results in death in infancy or the first years of life (summary by Rymen et al., 2015).
For a general discussion of CDGs, see CDG1A (212065) and CDG2A (212066).
Hyperphosphatasia with intellectual disability syndrome 2- MedGen UID:
- 766551
- •Concept ID:
- C3553637
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-2 (HPMRS2) is an autosomal recessive disorder characterized by moderately to severely delayed psychomotor development, facial dysmorphism, brachytelephalangy, and increased serum alkaline phosphatase (hyperphosphatasia). Some patients may have additional features, such as cardiac septal defects or seizures (summary by Krawitz et al., 2012). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of hyperphosphatasia with impaired intellectual development syndrome, see HPMRS1 (239300).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Peroxisome biogenesis disorder 5A (Zellweger)- MedGen UID:
- 766854
- •Concept ID:
- C3553940
- •
- Disease or Syndrome
The peroxisomal biogenesis disorder (PBD) Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006).
For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100.
Individuals with PBDs of complementation group 5 (CG5, equivalent to CG10 and CGF) have mutations in the PEX2 gene. For information on the history of PBD complementation groups, see 214100.
Osteogenesis imperfecta type 14- MedGen UID:
- 767342
- •Concept ID:
- C3554428
- •
- Disease or Syndrome
Osteogenesis imperfecta (OI) is a connective tissue disorder characterized by bone fragility and low bone mass. Due to considerable phenotypic variability, Sillence et al. (1979) developed a classification of OI subtypes based on clinical features and disease severity: OI type I, with blue sclerae (166200); perinatal lethal OI type II, also known as congenital OI (166210); OI type III, a progressively deforming form with normal sclerae (259420); and OI type IV, with normal sclerae (166220). Most cases of OI are autosomal dominant with mutations in 1 of the 2 genes that code for type I collagen alpha chains, COL1A1 (120150) and COL1A2 (120160).
Shaheen et al. (2012) described osteogenesis imperfecta type XIV (OI14), an autosomal recessive form of the disorder characterized by variable degrees of severity of multiple fractures and osteopenia, with normal teeth, sclerae, and hearing. Fractures first occur prenatally or by age 6 years.
Osteosclerotic metaphyseal dysplasia- MedGen UID:
- 767579
- •Concept ID:
- C3554665
- •
- Disease or Syndrome
Osteosclerotic metaphyseal dysplasia (OSMD) is a rare condition characterized by distinctive radiographic changes, including osteosclerosis localized predominantly to the metaphyses of the long bones. The shafts of the long bones are osteopenic. Laboratory abnormalities include elevated alkaline phosphatase levels in some, but not all, patients. Elevated urinary pyridinoline and deoxypyridinoline levels, markers of osteoclastic activity, have also been reported (Nishimura and Kozlowski, 1993; Kasapkara et al., 2013; Guo et al., 2017).
Patients with OSMD have been described who also show hypotonia, developmental delay, seizures, and later-onset spastic paraplegia; however, OSMD resulting from mutation in the LRRK1 gene does not appear to include these neurologic features (Nishimura and Kozlowski, 1993; Kasapkara et al., 2013; Guo et al., 2017).
Reviews
Howaldt et al. (2020) reviewed published reports of LRRK1-associated OSMD, and noted that patients typically present with recurrent pathologic fractures and osteosclerosis at multiple skeletal sites, predominantly at the metaphyses and vertebral bodies. Variable degrees of osteosclerosis of ribs and skull and of Erlenmeyer flask deformity of the femurs have been observed.
Amyotrophic lateral sclerosis type 20- MedGen UID:
- 811608
- •Concept ID:
- C3715156
- •
- Disease or Syndrome
Any amyotrophic lateral sclerosis in which the cause of the disease is a mutation in the HNRNPA1 gene.
Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2- MedGen UID:
- 815798
- •Concept ID:
- C3809468
- •
- Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 3- MedGen UID:
- 815799
- •Concept ID:
- C3809469
- •
- Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Hyperphosphatasia with intellectual disability syndrome 4- MedGen UID:
- 816684
- •Concept ID:
- C3810354
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-4 (HPMRS4) is an autosomal recessive neurologic disorder characterized by severely delayed psychomotor development, impaired intellectual development, lack of speech acquisition, seizures, and dysmorphic facial features. Laboratory studies show increased serum alkaline phosphatase (summary by Howard et al., 2014). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of HPMRS, see HPMRS1 (239300).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Hyperphosphatasia with intellectual disability syndrome 5- MedGen UID:
- 863395
- •Concept ID:
- C4014958
- •
- Disease or Syndrome
GPIBD11 is an autosomal recessive disorder characterized by neonatal hypotonia, lack of psychomotor development, and variable seizures. Some patients may have dysmorphic features or increased serum alkaline phosphatase. The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis (summary by Hogrebe et al., 2016).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Fanconi renotubular syndrome 4 with maturity-onset diabetes of the young- MedGen UID:
- 863399
- •Concept ID:
- C4014962
- •
- Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the HNF4A gene.
Paget disease of bone 6- MedGen UID:
- 908743
- •Concept ID:
- C4085250
- •
- Disease or Syndrome
Paget disease of bone-6 (PDB6) is an autosomal dominant disorder characterized by adult onset of bone pain associated with polyostotic bone lesions primarily affecting the axial skeleton. A subset of patients develop coronary artery disease and/or malignant giant cell tumor (GCT) of the bone, which arises within the Paget bone lesions (summary by Divisato et al., 2016).
For a general phenotypic description and a discussion of genetic heterogeneity of Paget disease of bone, see 167250.
Paget disease of bone 2, early-onset- MedGen UID:
- 899166
- •Concept ID:
- C4085251
- •
- Disease or Syndrome
Paget disease (PDB) is a metabolic bone disease characterized by focal abnormalities of increased bone turnover affecting one or more sites throughout the skeleton, primarily the axial skeleton. Bone lesions in this disorder show evidence of increased osteoclastic bone resorption and disorganized bone structure. See reviews by Ralston et al. (2008) and Ralston and Albagha (2014).
For a discussion of genetic heterogeneity of Paget disease of bone, see 167250.
Paget disease of bone 3- MedGen UID:
- 895927
- •Concept ID:
- C4085252
- •
- Disease or Syndrome
Paget disease (PDB) is a metabolic bone disease characterized by focal abnormalities of increased bone turnover affecting one or more sites throughout the skeleton, primarily the axial skeleton. Bone lesions in this disorder show evidence of increased osteoclastic bone resorption and disorganized bone structure. See reviews by Ralston et al. (2008) and Ralston and Albagha (2014).
Genetic Heterogeneity of Paget Disease of Bone
Also see PDB2 (602080), caused by mutation in the TNFRSF11A gene (603499) on chromosome 18q21; PDB4 (606263), mapped to chromosome 5q31; PDB5 (239000), caused by mutation in the TNFRSF11B gene (602643) on chromosome 8q24; and PDB6 (616833), caused by mutation in the ZNF687 gene (610568) on chromosome 1q21.
Suggestive linkage of a form of PDB to chromosome 6p (PDB1) was reported by Fotino et al. (1977); however, further studies did not confirm linkage to this site (Moore and Hoffman, 1988; Nance et al., 2000; Good et al., 2001).
TMEM199-CDG- MedGen UID:
- 895025
- •Concept ID:
- C4225190
- •
- Disease or Syndrome
Congenital disorder of glycosylation type IIp (CDG2P) is an autosomal recessive metabolic disorder characterized by mild liver dysfunction, which may be found incidentally during adolescence. Laboratory abnormalities include elevated liver enzymes and alkaline phosphatase, coagulation factor deficiencies, hypercholesterolemia, and low ceruloplasmin. Serum isoelectric focusing of proteins shows a combined defect of N- and O-glycosylation, suggestive of a Golgi defect (summary by Jansen et al., 2016).
For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066).
Hyperphosphatasia with intellectual disability syndrome 6- MedGen UID:
- 906509
- •Concept ID:
- C4225201
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-6 (HPMRS6) is an autosomal recessive multisystem disorder characterized by global developmental delay, dysmorphic features, seizures, and congenital cataracts. Severity is variable, and the disorder may show a range of phenotypic and biochemical abnormalities, including increased serum alkaline phosphatase levels (summary by Ilkovski et al., 2015). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.
For a discussion of genetic heterogeneity of HPMRS, see HPMRS1 (239300).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
COG4-congenital disorder of glycosylation- MedGen UID:
- 929221
- •Concept ID:
- C4303552
- •
- Disease or Syndrome
An extremely rare form of carbohydrate deficient glycoprotein syndrome with, in the single reported case to date, seizures, some dysmorphic features, axial hypotonia, slight peripheral hypertonia and hyperreflexia.
Mitochondrial DNA depletion syndrome 15 (hepatocerebral type)- MedGen UID:
- 934657
- •Concept ID:
- C4310690
- •
- Disease or Syndrome
Any mitochondrial DNA depletion syndrome in which the cause of the disease is a mutation in the TFAM gene.
Growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy- MedGen UID:
- 934687
- •Concept ID:
- C4310720
- •
- Disease or Syndrome
GRIDHH is an autosomal recessive multisystem disorder characterized by poor overall growth, impaired intellectual development, hypotonia, and variable liver dysfunction. Additional features, such as seizures and hearing loss, may also be present (summary by Kopajtich et al., 2016).
Intellectual disability, autosomal recessive 53- MedGen UID:
- 934761
- •Concept ID:
- C4310794
- •
- Disease or Syndrome
Neurodevelopmental disorder with or without hypotonia, seizures, and cerebellar atrophy (NEDHSCA) is an autosomal recessive disorder characterized by severely delayed psychomotor development, hypotonia apparent since infancy, and early-onset seizures in most patients. Some patients may have additional features, such as cerebellar atrophy, ataxia, and nonspecific dysmorphic features. NEDHSCA is one of a group of similar neurologic disorders resulting from biochemical defects in the glycosylphosphatidylinositol (GPI) biosynthetic pathway. Some patients with NEDHSCA may have the Emm-null blood group phenotype (see 619812) (summary by Makrythanasis et al., 2016; Duval et al., 2021).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Craniometadiaphyseal dysplasia wormian bone type- MedGen UID:
- 1382152
- •Concept ID:
- C4510809
- •
- Disease or Syndrome
Craniometadiaphyseal dysplasia (CRMDD) is characterized clinically by macrocephaly with frontal prominence, dental hypoplasia, and increased bone fragility. Diagnostic radiologic features include thin bones in the superior part of calvaria with prominent wormian bones, diaphyseal widening of the long tubular bones in early childhood with wide undermineralized metaphyses in older individuals, widened ribs and clavicles, and broadening of short tubular bones with increased transparency and thin cortices (summary by Dhar et al., 2010).
Glycosylphosphatidylinositol biosynthesis defect 16- MedGen UID:
- 1628197
- •Concept ID:
- C4540521
- •
- Disease or Syndrome
Hyperphosphatasia with intellectual disability syndrome 1- MedGen UID:
- 1647044
- •Concept ID:
- C4551502
- •
- Disease or Syndrome
Hyperphosphatasia with impaired intellectual development syndrome-1 (HPMRS1) is an autosomal recessive disorder characterized by impaired intellectual development, various neurologic abnormalities such as seizures and hypotonia, and hyperphosphatasia. Other features include facial dysmorphism and variable degrees of brachytelephalangy (summary by Krawitz et al., 2010). The disorder is caused by a defect in glycosylphosphatidylinositol biosynthesis; see GPIBD1 (610293).
Genetic Heterogeneity of Hyperphosphatasia with Impaired Intellectual Development Syndrome
See also HPMRS2 (614749), caused by mutation in the PIGO gene (614730) on chromosome 9p13; HPMRS3 (614207), caused by mutation in the PGAP2 gene (615187) on chromosome 11p15; HPMRS4 (615716), caused by mutation in the PGAP3 gene (611801) on chromosome 17q12; HPMRS5 (616025), caused by mutation in the PIGW gene (610275) on chromosome 17q12; and HPMRS6 (616809), caused by mutation in the PIGY gene (610662) on chromosome 4q22.
Knaus et al. (2018) provided a review of the main clinical features of the different types of HPMRS, noting that some patients have a distinct pattern of facial anomalies that can be detected by computer-assisted comparison, particularly those with mutations in the PIGV and PGAP3 genes. Individuals with HPMRS have variable increased in alkaline phosphatase (AP) as well as variable decreases in GPI-linked proteins that can be detected by flow cytometry. However, there was no clear correlation between AP levels or GPI-linked protein abnormalities and degree of neurologic involvement, mutation class, or gene involved. Knaus et al. (2018) concluded that a distinction between HPMRS and MCAHS (see, e.g., 614080), which is also caused by mutation in genes involved in GPI biosynthesis, may be artificial and even inaccurate, and that all these disorders should be considered and classified under the more encompassing term of 'GPI biosynthesis defects' (GPIBD).
Fanconi renotubular syndrome 1- MedGen UID:
- 1635492
- •Concept ID:
- C4551503
- •
- Disease or Syndrome
Tumoral calcinosis, hyperphosphatemic, familial, 1- MedGen UID:
- 1642611
- •Concept ID:
- C4692564
- •
- Disease or Syndrome
Hyperphosphatemic familial tumoral calcinosis (HFTC) is characterized by: Ectopic calcifications (tumoral calcinosis) typically found in periarticular soft tissues exposed to repetitive trauma or prolonged pressure (e.g., hips, elbows, and shoulders); and Painful swellings (referred to as hyperostosis) in the areas overlying the diaphyses of the tibiae (and less often the ulna, metacarpal bones, and radius). The dental phenotype unique to HFTC includes enamel hypoplasia, short and bulbous roots, obliteration of pulp chambers and canals, and pulp stones. Less common are large and small vessel calcifications that are often asymptomatic incidental findings on radiologic studies but can also cause peripheral vascular insufficiency (e.g., pain, cold extremities, and decreased peripheral pulses). Less frequently reported findings include testicular microlithiasis and angioid streaks of the retina.
Glycosylphosphatidylinositol biosynthesis defect 18- MedGen UID:
- 1648478
- •Concept ID:
- C4748357
- •
- Disease or Syndrome
Developmental and epileptic encephalopathy-95 (DEE95) is a severe autosomal recessive disorder characterized by severely impaired global development, hypotonia, weakness, ataxia, coarse facial features, and intractable seizures. More variable features may include abnormalities of the hands and feet, inguinal hernia, and feeding difficulties. The disorder is part of a group of similar neurologic disorders resulting from biochemical defects in the glycosylphosphatidylinositol (GPI) biosynthetic pathway (summary by Nguyen et al., 2018).
For a general phenotypic description and a discussion of genetic heterogeneity of DEE, see 308350.
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Spondyloepimetaphyseal dysplasia, Krakow type- MedGen UID:
- 1648323
- •Concept ID:
- C4748455
- •
- Disease or Syndrome
Krakow-type spondyloepimetaphyseal dysplasia is characterized by severe skeletal dysplasia, severe immunodeficiency, and developmental delay (Csukasi et al., 2018).
Trichohepatoneurodevelopmental syndrome- MedGen UID:
- 1648322
- •Concept ID:
- C4748898
- •
- Disease or Syndrome
Trichohepatoneurodevelopmental syndrome is a complex multisystem disorder characterized by woolly or coarse hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and severe global developmental delay (Morimoto et al., 2018).
Ferro-cerebro-cutaneous syndrome- MedGen UID:
- 1658844
- •Concept ID:
- C4751570
- •
- Disease or Syndrome
A rare genetic metabolic liver disease with characteristics of progressive neurodegeneration, cutaneous abnormalities including varying degrees of ichthyosis or seborrheic dermatitis, and systemic iron overload. Patients manifest with infantile-onset seizures, encephalopathy, abnormal eye movements, axial hypotonia with peripheral hypertonia, brisk reflexes, cortical blindness and deafness, myoclonus and hepato/splenomegaly, as well as oral manifestations including microdontia, widely spaced and pointed teeth with delayed eruption and gingival overgrowth.
Developmental and epileptic encephalopathy, 77- MedGen UID:
- 1684735
- •Concept ID:
- C5231405
- •
- Disease or Syndrome
Multiple congenital anomalies-hypotonia-seizures syndrome-4 (MCAHS4) is an autosomal recessive neurologic disorder characterized by onset of refractory seizures in the first months of life. Patients have severe global developmental delay, and may have additional variable features, including dysmorphic or coarse facial features, visual defects, and mild skeletal or renal anomalies. At the cellular level, the disorder is caused by a defect in the synthesis of glycosylphosphatidylinositol (GPI), and thus affects the expression of GPI-anchored proteins at the cell surface (summary by Starr et al., 2019).
For a discussion of genetic heterogeneity of MCAHS, see MCAHS1 (614080).
For a discussion of genetic heterogeneity of DEE, see 308350.
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Developmental and epileptic encephalopathy, 80- MedGen UID:
- 1684779
- •Concept ID:
- C5231418
- •
- Disease or Syndrome
Developmental and epileptic encephalopathy-80 (DEE80) is an autosomal recessive neurologic disorder characterized by the onset of refractory seizures in the first year of life. Patients have severe global developmental delay and may have additional variable features, including dysmorphic or coarse facial features, distal skeletal abnormalities, and impaired hearing or vision. At the cellular level, the disorder is caused by a defect in the synthesis of glycosylphosphatidylinositol (GPI), and thus affects the expression of GPI-anchored proteins at the cell surface (summary by Murakami et al., 2019).
For a discussion of genetic heterogeneity of DEE, see 308350.
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Glycosylphosphatidylinositol biosynthesis defect 21- MedGen UID:
- 1684749
- •Concept ID:
- C5231419
- •
- Disease or Syndrome
Neurodevelopmental disorder with brain anomalies, seizures, and scoliosis (NEDBSS) is an autosomal recessive disorder characterized by severely impaired psychomotor development, hypotonia, seizures, and structural brain anomalies, including thin corpus callosum and cerebellar atrophy. Other features include scoliosis, dysmorphic facies, and visual impairment. Affected individuals are usually unable to walk or speak and may require tube feeding in severe cases. The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis (summary by Knaus et al., 2019).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures- MedGen UID:
- 1710849
- •Concept ID:
- C5394372
- •
- Disease or Syndrome
Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures (NEDHCAS) is an autosomal recessive neurodevelopmental disorder characterized by global developmental delay with variably impaired intellectual development, delayed motor skills, and poor or absent speech. Most patients develop early-onset seizures and demonstrate cerebellar ataxia or dysmetria associated with progressive cerebellar atrophy on brain imaging. The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis (summary by Nguyen et al., 2020).
For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293).
Vitamin D-dependent rickets, type 3- MedGen UID:
- 1725534
- •Concept ID:
- C5436733
- •
- Disease or Syndrome
Vitamin D-dependent rickets-3 (VDDR3) is characterized by early-onset rickets, reduced serum levels of the vitamin D metabolites 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and deficient responsiveness to the parent molecule as well as activated forms of vitamin D (Roizen et al., 2018).
For discussion of genetic heterogeneity of vitamin D-dependent rickets, see 264700.
Cholestasis, progressive familial intrahepatic, 6- MedGen UID:
- 1794175
- •Concept ID:
- C5561965
- •
- Disease or Syndrome
Progressive familial intrahepatic cholestasis-6 (PFIC6) is an autosomal recessive disorder characterized by elevated liver transaminases, cholestasis, and congenital diarrhea (Gao et al., 2020).
For a general phenotypic description and a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Congenital disorder of glycosylation, type IIw- MedGen UID:
- 1794196
- •Concept ID:
- C5561986
- •
- Disease or Syndrome
Congenital disorder of glycosylation type IIw (CDG2W) is an autosomal dominant metabolic disorder characterized by liver dysfunction, coagulation deficiencies, and profound abnormalities in N-glycosylation of serum specific proteins. All reported patients carry the same mutation (602671.0017) (summary by Ng et al., 2021).
For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066).
Biliary, renal, neurologic, and skeletal syndrome- MedGen UID:
- 1794200
- •Concept ID:
- C5561990
- •
- Disease or Syndrome
Biliary, renal, neurologic, and skeletal syndrome (BRENS) is an autosomal recessive complex ciliopathy with multisystemic manifestations. The most common presentation is severe neonatal cholestasis that progresses to liver fibrosis and cirrhosis. Most patients have additional clinical features suggestive of a ciliopathy, including postaxial polydactyly, hydrocephalus, retinal abnormalities, and situs inversus. Additional features of the syndrome may include congenital cardiac defects, echogenic kidneys with renal failure, ocular abnormalities, joint hyperextensibility, and dysmorphic facial features. Some patients have global developmental delay. Brain imaging typically shows dilated ventricles, hypomyelination, and white matter abnormalities, although some patients have been described with abnormal pituitary development (summary by Shaheen et al., 2020 and David et al., 2020).
Cholestasis, progressive familial intrahepatic, 7, with or without hearing loss- MedGen UID:
- 1794253
- •Concept ID:
- C5562043
- •
- Disease or Syndrome
Progressive intrahepatic cholestasis-7 with or without hearing loss (PFIC7) is an autosomal recessive liver disorder characterized by infantile-onset jaundice and itching associated with cholestasis, elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and normal gamma glutamyltransferase (GGT). Liver biopsy shows hepatocellular and canalicular cholestasis with fibrotic changes. Many patients have resolution of the liver abnormalities with age, although some may have persistent liver enzyme abnormalities or splenomegaly. A subset of patients develops hearing loss in childhood between early infancy and the teenage years. Rifampicin may be effective for pruritis (summary by Maddirevula et al., 2019).
For a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Cholestasis, progressive familial intrahepatic, 8- MedGen UID:
- 1794255
- •Concept ID:
- C5562045
- •
- Disease or Syndrome
Progressive familial intrahepatic cholestasis-8 (PFIC8) is an autosomal recessive disorder characterized by cholestasis and high gamma-glutamyltransferase presenting in the infantile period (summary by Unlusoy Aksu et al., 2019).
For a general phenotypic description and a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Primordial dwarfism-immunodeficiency-lipodystrophy syndrome- MedGen UID:
- 1823971
- •Concept ID:
- C5774198
- •
- Disease or Syndrome
Primordial dwarfism-immunodeficiency-lipodystrophy syndrome (PDIL) is characterized by pre- and postnatal growth restriction, with extreme microcephaly, short stature, and absence of subcutaneous fat. There is also significant hematologic/immune dysfunction, with hypo- or agammaglobulinemia, as well as lymphopenia, anemia, and thrombocytopenia, and most affected individuals succumb to infection in early childhood (Parry et al., 2020).
Osteopetrosis, autosomal recessive 9- MedGen UID:
- 1841123
- •Concept ID:
- C5830487
- •
- Disease or Syndrome
Autosomal recessive osteopetrosis-9 (OPTB9) is characterized by increased bone density and bone fragility, as well as renal failure. Vision may be compromised due to compression of the optic nerve secondary to osteopetrotic stenosis of the optic nerve canal (Xue et al., 2022).
For a general phenotypic description and discussion of genetic heterogeneity of autosomal recessive osteopetrosis, see OPTB1 (259700).
Muscular dystrophy, limb-girdle, autosomal recessive 28- MedGen UID:
- 1841154
- •Concept ID:
- C5830518
- •
- Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-28 (LGMDR28) is characterized by progressive muscle weakness affecting the proximal and axial muscles of the upper and lower limbs. The age at onset is highly variable, usually in the first decade, although onset in the fourth decade has also been reported. The disorder can be rapidly progressive or show a slower course. Most patients have limited ambulation or become wheelchair-bound within a few decades, and respiratory insufficiency commonly occurs. Laboratory studies show increased serum creatine kinase and elevated fasting blood glucose levels, although cholesterol is normal. EMG shows a myopathic pattern; muscle biopsy is generally unremarkable, but can show nonspecific myopathic or dystrophic features (Yogev et al., 2023; Morales-Rosado et al., 2023).
For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Combined oxidative phosphorylation deficiency 58- MedGen UID:
- 1841277
- •Concept ID:
- C5830641
- •
- Disease or Syndrome
Combined oxidative phosphorylation deficiency-58 (COXPD58) is an autosomal recessive disorder characterized by a wide range of clinical presentations including neonatal lactic acidosis, epileptic encephalopathy, developmental delay and impaired intellectual development with nonspecific changes on brain MRI, or mitochondrial myopathy with a treatable neuromuscular transmission defect (Van Haute et al., 2023).
For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Congenital disorder of glycosylation, type IIaa- MedGen UID:
- 1841287
- •Concept ID:
- C5830651
- •
- Disease or Syndrome
Congenital disorder of glycosylation type IIaa (CDG2AA) is an autosomal recessive disorder characterized by infantile mortality due to liver disease, skeletal abnormalities, and protein glycosylation defects (Linders et al., 2021).
For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066).