NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE6165 Query DataSets for GSE6165
Status Public on Jan 22, 2007
Title The effect of mutations in AtrbohC on the pattern of gene expression in primary root tissue.
Organism Arabidopsis thaliana
Experiment type Expression profiling by array
Summary Aim: To determine the effect of an AtrbohC mutation on the gene expression pattern in primary root tissue, to identify candidate genes acting downstream of AtrbohC, particularly any encoding antioxidant-related proteins, signal transduction components or proteins known to be required for normal root-hair development. Background: Root-hairs are a model system for investigating plant cell polarity. The root-hair mutant rhd2 (Schiefelbein and Somerville, 1990. Plant Cell, 2:235) has short hairs that burst at their tips, (Jones and Smirnoff, unpublished). RHD2 has been cloned and is identical to AtrbohC (L. Dolan, pers. comm.), which encodes a homologue of the superoxide-generating neutrophil respiratory burst oxidase catalytic subunit gp91phox (Torres et al., 1998. Plant J., 14:365). Superoxide rapidly dismutates to hydrogen peroxide (H2O2), suggesting that the rhd2 phenotype may result from reduced H2O2 levels in root-hair cells. Low doses of exogenous antioxidants phenocopy the rhd2 root-hair phenotype in wild-type plants (Jones and Smirnoff, unpublished) further supporting a role for H2O2 in root-hair growth. Fluorescent dyes that detect H2O2 show distinct localisation patterns in growing root-hair cells, (Jones and Smirnoff, unpublished). H2O2 may be an important second messenger in plant cell signalling with proposed roles in the development of cotton fibres (Potikha et al., 1999. Plant Physiol., 119: 849) and in ABA-induced stomatal closure (Zhang et al., 2001. Plant Physiol., 126: 1438). In cultured Arabidopsis cells H2O2 induces gene expression, including that of a gp91phox homologue, (Desikan et al., 1998. J. Exp. Bot., 49: 1767; Desikan, et al., 2000. Free Rad. Biol. Med., 28: 773; Baxter-Burrell et al., 2002. Science, 296: 2026) and activates a MAP kinase cascade (Desikan et al., 1999. J. Exp Bot., 50: 1863). cDNA microarray technology has been used previously to examine the effects of H2O2 on gene expression during oxidative stress (Desikan et al., 2001. Plant Physiol., 127: 159). We wish to investigate the effects of H2O2 on gene expression during root development using the rhd2 mutant. We are currently determining the expression pattern of RHD2. By extracting RNA from the small region of the primary root (for wild-type and rhd2 plants grown in sterile conditions) where root hairs are growing we hope to enrich for root-hair RNAs. This may reveal candidate genes that could be examined more closely at the single-cell level. This approach will provide new insights into the role of H2O2 in root-hair development.
Keywords: strain_or_line_design
 
Overall design Number of plants pooled:100
 
Contributor(s) Jones M
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Oct 27, 2006
Last update date Aug 28, 2018
Contact name Nottingham Arabidopsis Stock Centre (NASC)
E-mail(s) [email protected]
Phone +44 (0)115 951 3237
Fax +44 (0)115 951 3297
URL http://arabidopsis.info/
Organization name Nottingham Arabidopsis Stock Centre (NASC)
Department School of Biosciences, University of Nottingham
Street address Sutton Bonington Campus
City Loughborough
ZIP/Postal code LE12 5RD
Country United Kingdom
 
Platforms (1)
GPL198 [ATH1-121501] Affymetrix Arabidopsis ATH1 Genome Array
Samples (6)
GSM142750 MJ001_ATH1_A1-jones-WT1
GSM142751 MJ001_ATH1_A2-jones-WT2
GSM142752 MJ001_ATH1_A3-jones-rh1
Relations
BioProject PRJNA100673

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE6165_RAW.tar 13.9 Mb (http)(custom) TAR (of CEL)

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap