Genome binding/occupancy profiling by high throughput sequencing Expression profiling by high throughput sequencing
Summary
Oncogenic mutations in isocitrate dehydrogenase (IDH)-1 and -2 occur in a wide range of cancers, including acute myeloid leukemias (AMLs) and gliomas1-3. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG]4,5, an oncometabolite that induces cellular transformation by dysregulating 2OG-dependent enzymes. The only direct target of (R)-2HG known to contribute to transformation is the 5-methylcytosine hydroxylase TET2, and there is ample evidence to suggest that (R)-2HG drives leukemogenesis at least in part by inhibiting TET26,7. However, IDH mutations, but not TET2 mutations, are specifically associated with aggressive hematologic diseases, suggesting that (R)-2HG has targets other than TET2 that contribute to mutant IDH-mediated transformation. Here, we report that (R)-2HG directly inhibits KDM5 histone lysine demethylases in IDH-mutant AMLs and gliomas to induce cellular transformation. These studies provide a functional link between dysregulation of histone lysine methylation and tumorigenesis in IDH-mutant cancers.
Overall design
H3K4me3 ChIP-Seq (two biological replicates per sample and one input sample per cell line), and RNAseq (two biological replicates per sample).