U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 294

1.

Ethanolamine-induced assembly of microcompartments is required for Fusobacterium nucleatum virulence

(Submitter supplied) Many bacteria metabolize ethanolamine as a nutrient source through cytoplasmic organelles named bacterial microcompartments (BMCs). Here we investigated the molecular assembly, regulation, and function of BMCs in Fusobacterium nucleatum – a Gram-negative oral pathobiont that is associated with adverse pregnancy outcomes. The F. nucleatum genome harbors a conserved ethanolamine utilization (eut) locus with 21 genes that encode several putative BMC shell proteins and a two-component signal transduction system (TCS), in addition to the enzymes for ethanolamine transport and catabolism. more...
Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 23726
Type:
Expression profiling by high throughput sequencing
Platform:
GPL35071
6 Samples
Download data: XLSX
Series
Accession:
GSE280934
ID:
200280934
2.

Spermine-induced DNA methylation change in human macrophages

(Submitter supplied) Polyamines, crucial molecules involved in cell proliferation and growth, play a pivotal role in cancer development and progression. Within the tumor microenvironment, macrophages, key components of the immune system, exhibit a complex relationship with polyamines. Evidence suggests that polyamines can modulate macrophage polarization, influencing their functional phenotypes. Here, we detected the gene DNA methylation changes in spermine-stimulated human macrophages isolated from PBMCs and TAMs.
Organism:
Yersinia pseudotuberculosis; Rickettsia prowazekii; Bartonella quintana; Mycobacterium avium; Homo sapiens; Streptobacillus moniliformis; Bartonella henselae; Francisella tularensis subsp. tularensis; Francisella tularensis subsp. holarctica; Yersinia enterocolitica; Toxoplasma gondii; Salmonella enterica subsp. enterica serovar Typhimurium; Mammarenavirus choriomeningitidis; Orthohantavirus puumalaense; Leptospira interrogans; Rickettsia typhi; Mycobacterium tuberculosis variant bovis; Mycobacterium tuberculosis; Mycobacterium tuberculosis variant microti; Mycobacterium canetti; Orthohantavirus seoulense; Campylobacter jejuni; Francisella tularensis subsp. novicida; Yersinia pestis; Staphylococcus aureus; Mycobacterium avium subsp. paratuberculosis; Cowpox virus; Escherichia coli O157:H7; Francisella tularensis subsp. mediasiatica; Paslahepevirus balayani
Type:
Methylation profiling by array
Platform:
GPL21445
4 Samples
Download data: IDAT, TXT
Series
Accession:
GSE267014
ID:
200267014
3.

Metformin treatment on Fusobacterium nucleatum

(Submitter supplied) High throughput RNA sequencing For RNA sequencing, F. nucleatum was incubated with 1 mM or 5 mM metformin for 7 hours, when the bacterium were under logarithmic phase. Total RNA of F. nucleatum was stabilized with RNA protect Bacteria Reagent (QIAGEN, Germany) and extracted using a QIAGEN RNeasy kit (QIAGEN, Germany) following the manufacturer’s instructions.
Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Type:
Expression profiling by high throughput sequencing
Platform:
GPL29979
9 Samples
Download data: TXT
Series
Accession:
GSE171561
ID:
200171561
4.

Transcriptome fine-mapping reveals FoxJ, a σE-dependent small RNA with unusual mRNA activation activity in Fusobacterium nucleatum

(Submitter supplied) The oral commensal Fusobacterium nucleatum can spread to extra-oral sites where it is associated with pathologies as diverse as pre-term birth or cancer. Due to the evolutionary distance of F. nucleatum to other model bacteria, we lack a deeper understanding of RNA regulatory networks that allow this bacterium to adapt to different environmental niches. As a first step in that direction, we recently showed that F. more...
Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 23726
Type:
Expression profiling by high throughput sequencing
Platform:
GPL33873
15 Samples
Download data: WIG
Series
Accession:
GSE249955
ID:
200249955
5.

A global survey of small RNA interactors identifies KhpA and KhpB as major RNA-binding proteins in Fusobacterium nucleatum

(Submitter supplied) The common oral microbe Fusobacterium nucleatum has recently gained attention when it was found to colonize tumors throughout the human body. Fusobacteria are also interesting in regard to bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. Here, to search for alternate sRNA-associated RBPs in F. more...
Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 23726
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL33873
26 Samples
Download data: WIG
Series
Accession:
GSE246396
ID:
200246396
6.

Expanding the genetic tool kit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum

(Submitter supplied) We elucidated the global regulatory network of sigma E in Fusobacterium nucleatum. For this, we developed new genetic tools for the anaerobic bacterium. This uncovered a conserved regulon of the sigma factor including a noncoding arm of the sRNA FoxI. In this process, FoxI serves as a negative regulator of sigma E to downregulate several outer membrane proteins as well as the putative galactose transporter mglBAC.
Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 23726
Type:
Expression profiling by high throughput sequencing
Platform:
GPL31122
33 Samples
Download data: WIG
Series
Accession:
GSE192339
ID:
200192339
7.

The fused methionine sulfoxide reductase MsrAB promotes oxidative stress defense and bacterial virulence in Fusobacterium nucleatum

(Submitter supplied) Recognizably associated with oral infections, adverse pregnancy outcomes, and colorectal cancer, the Gram-negative oral bacterium Fusobacterium nucleatum is known to colonize many extraoral sites including placenta and colon. How this anaerobe copes with oxidative stress imposed by the host immune response in various tissues is unknown. Here, we revealed that F. nucleatum harbors a gene locus coding for a single, fused methionine sulfoxide reductase (MsrAB), a two-component transduction system (ModRS), thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins. more...
Organism:
Fusobacterium nucleatum subsp. nucleatum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL29799
12 Samples
Download data: XLSX
Series
Accession:
GSE174320
ID:
200174320
8.

Influence of dual-species coaggregation on transcriptional changes of Streptococcus gordonii and Fusobacterium nucleatum subsp. polymorphum

(Submitter supplied) Interspecies coaggregation promotes transcriptional changes of oral bacteria, contributing to the development of structurally balanced biofilms as well as oral diseases such as periodontitis. Streptococcus gordonii (S. gordonii) is an early colonizer of the oral cavity, and Fusobacterium nucleatum (F. nucleatum) may act as a bridge adhering to both early and late oral colonizers. These two species were commonly detected in healthy and periodontitis-diseased oral sites and could interact with immune cells such as macrophages. more...
Organism:
Streptococcus gordonii str. Challis substr. CH1; Fusobacterium polymorphum
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL29567 GPL29569 GPL29568
9 Samples
Download data: FNA, GFF, TXT
Series
Accession:
GSE164282
ID:
200164282
9.

Genetic and molecular determinants of polymicrobial interactions in Fusobacterium nucleatum

(Submitter supplied) A gram-negative colonizer of the oral cavity, Fusobacterium nucleatum not only interacts with many pathogens in the oral microbiome but also has the ability to spread to extraoral sites including placenta and amniotic fluid, promoting preterm birth. To date, however, the molecular mechanism of interspecies interactions –termed coaggregation–by F. nucleatum and how coaggregation affects bacterial virulence remain poorly defined. more...
Organism:
Fusobacterium nucleatum subsp. nucleatum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL29799
6 Samples
Download data: XLSX
Series
Accession:
GSE168051
ID:
200168051
10.

RNA landscape of the emerging cancer-bug Fusobacterium nucleatum

(Submitter supplied) Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered much attention for its newly discovered prevalence in colorectal and breast cancer tissue. The growing interest in this emerging cancer-associated bacterium sharply contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. Post-transcriptional networks are also unknown, for fusobacteria lack all established small RNA-associated proteins. more...
Organism:
Fusobacterium polymorphum ATCC 10953; Fusobacterium animalis 7_1; Fusobacterium vincentii 3_1_36A2; Fusobacterium nucleatum subsp. nucleatum ATCC 25586; Fusobacterium periodonticum 2_1_31
Type:
Expression profiling by high throughput sequencing
5 related Platforms
90 Samples
Download data: WIG
Series
Accession:
GSE161360
ID:
200161360
11.

A survey of Fusobacterium nuceatum genes modulated by host cell infection

(Submitter supplied) Here we report comprehensive transcriptomic profiles from Fusobacterium nucleatum (Fn) under conditions that mimic the first stages of bacterial infection in a highly-differentiated adenocarcinoma epithelial cell line. Our transcriptomic in vitro adenocarcinoma approach allows us to measure the expression dynamics and regulation of bacterial virulence and response factors in real time and is a novel strategy for clarifying the role of Fn infection in CRC progression. more...
Organism:
Fusobacterium nucleatum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL26625
9 Samples
Download data: TXT
Series
Accession:
GSE130714
ID:
200130714
12.

Method for absolute quantification of microbial communities by using both microarrays and competitive PCR

(Submitter supplied) We investigated an improved method that combines competitive PCR and microarray techniques. This approach allowed us to quantify specific bacterial groups mounted on DNA chips with accuracy close to that of real-time PCR, despite a measurement at the end point of PCR, and also to estimate the bacterial DNA content in sample DNA.
Organism:
Campylobacter rectus; Helicobacter pylori; Pseudomonas aeruginosa; Aggregatibacter actinomycetemcomitans; Phocaeicola vulgatus; Capnocytophaga gingivalis; Deinococcus radiodurans; Streptococcus mutans; Streptococcus intermedius; Cutibacterium acnes; Bacteria; Acinetobacter baumannii; Escherichia coli; Staphylococcus aureus; Staphylococcus epidermidis; Bacillus cereus; Schaalia odontolytica; Fusobacterium nucleatum subsp. nucleatum; Neisseria meningitidis; Porphyromonas gingivalis; Fusobacterium nucleatum; Clostridium beijerinckii; Lactobacillus gasseri; Tannerella forsythia; Treponema denticola; Cereibacter sphaeroides; Streptococcus gordonii; Streptococcus agalactiae; Enterococcus faecalis; Bifidobacterium adolescentis; Homo sapiens; Prevotella intermedia; Prevotella nigrescens
Type:
Other
Platform:
GPL25612
178 Samples
Download data: CSV
Series
Accession:
GSE125085
ID:
200125085
13.

Detection of a Yersinia pestis homologue in rodent samples

(Submitter supplied) A microarray was developed to screen rodent samples for pathogens of zoonotic importance In the work described here, a homologue to Yersinia pestis was found in rodent samples after screening with the microarray
Organism:
Campylobacter jejuni; Yersinia pestis; Mycobacterium tuberculosis variant microti; Rattus rattus; Mycobacterium canetti; Francisella tularensis subsp. mediasiatica; Mammarenavirus choriomeningitidis; Orthohantavirus puumalaense; Orthohantavirus seoulense; Leptospira interrogans; Francisella tularensis subsp. novicida; Yersinia pseudotuberculosis; Mycobacterium avium subsp. paratuberculosis; Mycobacterium tuberculosis; Mus musculus; Streptobacillus moniliformis; Bartonella henselae; Francisella tularensis subsp. tularensis; Paslahepevirus balayani; Yersinia enterocolitica; Rickettsia prowazekii; Rickettsia typhi; Mycobacterium tuberculosis variant bovis; Toxoplasma gondii; Apodemus sylvaticus; Salmonella enterica subsp. enterica serovar Typhimurium; Bartonella quintana; Staphylococcus aureus; Mycobacterium avium; Rattus norvegicus; Cowpox virus; Escherichia coli O157:H7; Francisella tularensis subsp. holarctica
Type:
Genome variation profiling by array
Platform:
GPL21445
65 Samples
Download data: TXT
Series
Accession:
GSE77765
ID:
200077765
14.

The Epigenomic Landscape of Prokaryotes

(Submitter supplied) DNA methylation is an important regulator of genome function in the eukaryotes, but it is currently unclear if the same is true in prokaryotes. While regulatory functions have been demonstrated for a small number of bacteria, there have been no large-scale studies of prokaryotic methylomes and the full repertoire of targets and biological functions of DNA methylation remains unclear. Here we applied single-molecule, real-time sequencing to directly study the methylomes of 232 phylogenetically diverse prokaryotes. more...
Organism:
Streptococcus equinus; Salmonella enterica subsp. arizonae serovar 62:z4,z23:-; Xylella fastidiosa Temecula1; Acetivibrio thermocellus ATCC 27405; Rhodopseudomonas palustris CGA009; Neisseria meningitidis FAM18; Thermoplasma acidophilum DSM 1728; Hydrogenovibrio crunogenus XCL-2; Chloroflexus aggregans DSM 9485; Thermosipho melanesiensis BI429; Shewanella woodyi ATCC 51908; Bradyrhizobium elkanii USDA 76; Dinoroseobacter shibae DFL 12 = DSM 16493; Parabacteroides distasonis ATCC 8503; Anoxybacillus flavithermus WK1; Escherichia coli str. K-12 substr. MG1655; Capnocytophaga ochracea DSM 7271; Haloterrigena turkmenica DSM 5511; Palaeococcus ferrophilus DSM 13482; Acetivibrio thermocellus DSM 1313; Gracilinema caldarium DSM 7334; Treponema succinifaciens DSM 2489; Caldithrix abyssi DSM 13497; Calidithermus chliarophilus DSM 9957; Cohnella panacarvi Gsoil 349; Methylobacterium sp. 10; Xanthobacter sp. 91; Geopsychrobacter electrodiphilus DSM 16401; Hydrogenovibrio marinus DSM 11271; Nocardia sp. BMG111209; Klebsiella oxytoca BRL6-2; Polaribacter sp. Hel_I_88; Methylohalobius crimeensis 10Ki; Streptomyces sp. WMMB 714; Ruminiclostridium josui JCM 17888; Alteromonas sp. ALT199; Aminiphilus circumscriptus DSM 16581; Caldicoprobacter oshimai DSM 21659; Microbacterium sp. KROCY2; Thermogemmatispora carboxidivorans; Ruminococcus flavefaciens AE3010; Butyrivibrio sp. FCS014; Polycyclovorans algicola TG408; Clostridium sp. KNHs205; Lachnospiraceae bacterium AC2029; Enterococcus faecalis 68A; Butyrivibrio sp. AE3004; Teredinibacter purpureus; Teredinibacter turnerae; Escherichia coli CFT073; Salmonella bongori NCTC 12419; Treponema denticola ATCC 35405; Akkermansia muciniphila ATCC BAA-835; Phaeobacter inhibens DSM 17395; Actinosynnema mirum DSM 43827; Staphylococcus aureus subsp. aureus USA300_TCH1516; Sphaerobacter thermophilus DSM 20745; Veillonella parvula DSM 2008; Streptobacillus moniliformis DSM 12112; Allomeiothermus silvanus DSM 9946; Sedimentitalea nanhaiensis DSM 24252; Sediminispirochaeta smaragdinae DSM 11293; Hirschia baltica ATCC 49814; Coraliomargarita akajimensis DSM 45221; Syntrophothermus lipocalidus DSM 12680; Stutzerimonas stutzeri RCH2; Syntrophobotulus glycolicus DSM 8271; Bacillus spizizenii str. W23; Phocaeicola salanitronis DSM 18170; Pseudofrankia sp. DC12; Nitratifractor salsuginis DSM 16511; Cellulophaga lytica DSM 7489; Asinibacterium sp. OR53; Solitalea canadensis DSM 3403; Patulibacter minatonensis DSM 18081; Acetobacterium woodii DSM 1030; Nocardia sp. BMG51109; Halomicrobium katesii DSM 19301; Nitriliruptor alkaliphilus DSM 45188; Methylophilus sp. 1; Pseudomonas aeruginosa NCAIM B.001380; Kangiella aquimarina DSM 16071; Pelobacter seleniigenes DSM 18267; Thiomicrospira pelophila DSM 1534; Desulfurobacterium sp. TC5-1; Bacteroides sp. 14(A); Clostridium sp. 12(A); Hydrogenovibrio kuenenii DSM 12350; Leptolyngbya sp. PCC 6406; Maribacter sp. Hel_I_7; Desulfospira joergensenii DSM 10085; Tolumonas lignilytica; Cellvibrionaceae bacterium 1162T.S.0a.05; Lacrimispora indolis SR3; Lacrimispora indolis DSM 755; Desulforegula conservatrix Mb1Pa; Oceanicola sp. HL-35; Algoriphagus marincola HL-49; Desulfohalovibrio reitneri; Alicyclobacillus macrosporangiidus CPP55; Pseudacidobacterium ailaaui; Mediterraneibacter gnavus AGR2154; Sediminibacter sp. Hel_I_10; Hydrogenovibrio sp. MA2-6; Pseudobutyrivibrio ruminis HUN009; Lachnoclostridium phytofermentans KNHs212; Robinsoniella sp. KNHs210; Lactococcus lactis subsp. lactis; Lactiplantibacillus plantarum; Lachnobacterium bovis; Clostridium perfringens ATCC 13124; Methanocaldococcus jannaschii DSM 2661; Methylorubrum extorquens AM1; Thermoplasma volcanium GSS1; Acidobacteriaceae bacterium TAA 166; Mycoplasmopsis bovis PG45; Methanospirillum hungatei JF-1; Actinobacillus succinogenes 130Z; Fervidobacterium nodosum Rt17-B1; Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = DSM 20088; Staphylothermus marinus F1; Thermoanaerobacter sp. X514; Xenorhabdus nematophila ATCC 19061; Galbibacter orientalis; Dyadobacter fermentans DSM 18053; Streptosporangium roseum DSM 43021; Pedobacter heparinus DSM 2366; Rhizobium etli CIAT 652; Meiothermus ruber DSM 1279; Planctopirus limnophila DSM 3776; Methanothermus fervidus DSM 2088; Sebaldella termitidis ATCC 33386; Methanohalophilus mahii DSM 5219; Aminobacterium colombiense DSM 12261; Acidobacteriaceae bacterium KBS 146; Pontibacter actiniarum DSM 19842; Thermobacillus composti KWC4; Marinithermus hydrothermalis DSM 14884; Bernardetia litoralis DSM 6794; Desulfobacca acetoxidans DSM 11109; Rikenella microfusus DSM 15922; Echinicola vietnamensis DSM 17526; Orenia marismortui DSM 5156; Sporocytophaga myxococcoides DSM 11118; Niabella soli DSM 19437; Sinorhizobium medicae WSM1115; Hippea alviniae EP5-r; Hippea sp. KM1; Sphingomonas melonis C3; Methylophilaceae bacterium 11; Thioalkalivibrio sp. ARh3; Thiomonas sp. FB-6; Oxalobacteraceae bacterium AB_14; Solidesulfovibrio cf. magneticus IFRC170; Desulfotignum balticum DSM 7044; Methylobacterium sp. EUR3 AL-11; Kallotenue papyrolyticum; Bryobacter aggregatus MPL3; Ruminococcus albus AD2013; Eubacterium sp. AB3007; Ruminococcaceae bacterium AE2021; Lachnospiraceae bacterium AC2031; Selenomonas ruminantium AC2024; Selenomonas sp. AB3002; Peptostreptococcaceae bacterium VA2; Ruminococcus sp. HUN007; Enterococcus gallinarum; Clostridium algidicarnis; Pyrococcus horikoshii OT3; Methylocystis sp. LW5; Agrobacterium fabrum str. C58; Persephonella; Mastigocladopsis repens PCC 10914; Neisseria gonorrhoeae FA 1090; Clostridioides difficile 630; Thiobacillus denitrificans ATCC 25259; Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150; Sulfurimonas denitrificans DSM 1251; Sulfolobus acidocaldarius DSM 639; Flavobacterium psychrophilum JIP02/86; Methanocorpusculum labreanum Z; Cronobacter; Pseudarthrobacter chlorophenolicus A6; Saccharomonospora viridis DSM 43017; Verrucomicrobia bacterium LP2A; Thermanaerovibrio acidaminovorans DSM 6589; Corynebacterium aurimucosum ATCC 700975; Zymomonas mobilis subsp. pomaceae ATCC 29192; Klebsiella aerogenes FGI35; Cellulophaga algicola DSM 14237; Flexistipes sinusarabici DSM 4947; Sulfurospirillum barnesii SES-3; Gillisia limnaea DSM 15749; Spirochaeta thermophila DSM 6578; Ruminococcus sp. NK3A76; Spirochaeta africana DSM 8902; Holophaga foetida DSM 6591; Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7; Acetivibrio clariflavus 4-2a; Thermacetogenium phaeum DSM 12270; Methylophilus sp. 5; Arthrobacter sp. 31Y; Methylophilus sp. 42; Methylotenera versatilis 79; Psychrilyobacter atlanticus DSM 19335; Prevotella sp. 10(H); Methylotenera sp. 73s; Acidovorax sp. JHL-3; Gillisia sp. JM1; Cellulomonas sp. KRMCY2; Clostridium sp. ASBs410; Limisalsivibrio acetivorans; Polaromonas sp. EUR3 1.2.1; Levilactobacillus brevis AG48; Pediococcus acidilactici AGR20; Exiguobacterium chiriqhucha; Prevotella sp. HUN102; Flavimarina sp. Hel_I_48; Lachnospiraceae bacterium AC2012; Clostridioides mangenotii LM2; Exiguobacterium aurantiacum DSM 6208; Exiguobacterium acetylicum DSM 20416; Exiguobacterium oxidotolerans JCM 12280; Exiguobacterium antarcticum DSM 14480; Methylobacter tundripaludum 21/22; Lachnoclostridium phytofermentans KNHs2132; Staphylococcus epidermidis AG42; Butyrivibrio sp. AE3003
Type:
Methylation profiling by high throughput sequencing
228 related Platforms
237 Samples
Download data: CSV, GFF
Series
Accession:
GSE69872
ID:
200069872
15.

The effect of blood on Fusobacterium nucleatum

(Submitter supplied) Fusobacterium nucleatum is a Gram-negative oral bacterial species associated with periodontal disease progression. As periodontal disease progresses, it is known F. nucleatum coaggregated with blood is frequently detected in the gingival crevice. However, it is largely unknown whether these interactions between F. nucleatum and blood induce a particular genetic response. We tested the cultures of F. more...
Organism:
Fusobacterium nucleatum; Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Type:
Expression profiling by array
Platform:
GPL9447
3 Samples
Download data: CEL
Series
Accession:
GSE36410
ID:
200036410
16.

A five-species transcriptome array for oral mixed-biofilm studies

(Submitter supplied) Investigation of whole genome gene expression levels of P. gingivalis W83, F. nucleatum DSMZ 25586, S. sanguinis SK36, A. actinomycetemcomitans HK1651, S. mutans UA159 in an 24 h old culture. Additionally, whole genome gene expression level changes of S. mutans UA159 biofilm cells after co-cultivation with S. mitis ATCC 11843 were compared to its single species biofilm growth after 24 h. Aim: Demonstration of the usefulness of a five-species gene expression array. more...
Organism:
Streptococcus mutans UA159; Porphyromonas gingivalis W83; Fusobacterium nucleatum; Aggregatibacter actinomycetemcomitans HK1651; Streptococcus mitis; Streptococcus sanguinis SK36
Type:
Expression profiling by array
Platforms:
GPL13444 GPL10873
12 Samples
Download data: CALLS, PAIR, TXT
Series
Accession:
GSE28841
ID:
200028841
17.

Characterization of the autoaggregation response of Fusobacterium nucleatum

(Submitter supplied) Fusobacterium nucleatum is a Gram negative oral bacterial species associated with periodontal disease progression. This species is perhaps best known for its ability to adhere to a vast array of other bacteria and eukaryotic cells. Numerous studies of F. nucleatum have examined various coaggregation partners and inhibitors, but it is largely unknown whether these interactions induce a particular genetic response. more...
Organism:
Fusobacterium nucleatum
Type:
Expression profiling by array
Platform:
GPL9447
6 Samples
Download data: CEL
Series
Accession:
GSE18554
ID:
200018554
18.

Illumina NextSeq 500 (Fusobacterium nucleatum)

Organism:
Fusobacterium nucleatum
Download data
Platform
Accession:
GPL35205
ID:
100035205
19.

Illumina HiSeq 1500 (Fusobacterium nucleatum subsp. nucleatum ATCC 23726)

Organism:
Fusobacterium nucleatum subsp. nucleatum ATCC 23726
1 Series
6 Samples
Download data
Platform
Accession:
GPL35071
ID:
100035071
20.

Illumina MiSeq (Fusobacterium nucleatum)

Organism:
Fusobacterium nucleatum
Download data
Platform
Accession:
GPL34431
ID:
100034431
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=txid32066[Organism]|query=1|qty=307|blobid=MCID_679084c73ebf2117044e41aa|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center