U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Euchromatic transposon insertions trigger production of novel pi- and endo-siRNAs at the target sites in the Drosophila germline

(Submitter supplied) The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA-mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
1 Sample
Download data: TXT
Series
Accession:
GSE46105
ID:
200046105
2.

The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline

(Submitter supplied) Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL25244
6 Samples
Download data: TXT
Series
Accession:
GSE125173
ID:
200125173
3.

Somatic piRNA pathway prevents transgenerational germline transposition

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Other; Expression profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275 GPL16479
28 Samples
Download data: BED, TXT
Series
Accession:
GSE112972
ID:
200112972
4.

Somatic piRNA pathway prevents transgenerational germline transposition [smallRNA-seq]

(Submitter supplied) Transposable elements (TEs) are genomic parasite that threat genome integrity. One major strategy organisms evolved to balance TE activity in the germline is the Piwi-interacting RNAs (piRNAs) pathway. It prevents transposition by repressing TE at transcriptional and/or post-transcriptional level. However, evidence that TE derepression caused by piRNA pathway impairment is actually followed by bursts of transposition is still lacking. more...
Organism:
Drosophila melanogaster
Type:
Other
Platforms:
GPL17275 GPL13304
4 Samples
Download data: TXT
Series
Accession:
GSE112971
ID:
200112971
5.

Somatic piRNA pathway prevents transgenerational germline transposition [circularDNA-seq]

(Submitter supplied) Transposable elements (TEs) are genomic parasite that threat genome integrity. One major strategy organisms evolved to balance TE activity in the germline is the Piwi-interacting RNAs (piRNAs) pathway. It prevents transposition by repressing TE at transcriptional and/or post-transcriptional level. However, evidence that TE derepression caused by piRNA pathway impairment is actually followed by bursts of transposition is still lacking. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL16479
2 Samples
Download data: TXT
Series
Accession:
GSE112968
ID:
200112968
6.

Somatic piRNA pathway prevents transgenerational germline transposition [RNA-seq]

(Submitter supplied) Transposable elements (TEs) are genomic parasite that threat genome integrity. One major strategy organisms evolved to balance TE activity in the germline is the Piwi-interacting RNAs (piRNAs) pathway. It prevents transposition by repressing TE at transcriptional and/or post-transcriptional level. However, evidence that TE derepression caused by piRNA pathway impairment is actually followed by bursts of transposition is still lacking. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17275
8 Samples
Download data: TXT
Series
Accession:
GSE112966
ID:
200112966
7.

Somatic piRNA pathway prevents transgenerational germline transposition [DNA-seq]

(Submitter supplied) Transposable elements (TEs) are genomic parasite that threat genome integrity. One major strategy organisms evolved to balance TE activity in the germline is the Piwi-interacting RNAs (piRNAs) pathway. It prevents transposition by repressing TE at transcriptional and/or post-transcriptional level. However, evidence that TE derepression caused by piRNA pathway impairment is actually followed by bursts of transposition is still lacking. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL17275
14 Samples
Download data: BED
Series
Accession:
GSE112925
ID:
200112925
8.

Defining the Expression of piRNAs and Transposable Elements in Drosophila Ovarian Germline Stem Cells and Niche Cells

(Submitter supplied) Summary: Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Here, we show that the canonical piRNA clusters are more active in GSCs (germline stem cells) and their early progeny than late germ cells, and identify new piRNA clusters using deep RNA sequencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17275
57 Samples
Download data: BED, XLS
Series
Accession:
GSE119862
ID:
200119862
9.

Natural variation of piRNA expression affects immunity to transposable elements

(Submitter supplied) In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
7 Samples
Download data: TXT
Series
Accession:
GSE83316
ID:
200083316
10.

Anopheles gambiae G3 small RNA sequence: Adult Female Body

(Submitter supplied) We provide a broad overview of sequence diversity in An. gambiae mature microRNAs, including annotation of novel microRNAs identified in this study.
Organism:
Anopheles gambiae
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL15693 GPL17644
8 Samples
Download data: TXT
Series
Accession:
GSE50396
ID:
200050396
11.

Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis

(Submitter supplied) The piRNA pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. piRNAs are maternally deposited and required for proper transposon silencing in adult offspring. However, a long-standing question in the field is the precise function of maternally deposited piRNAs and its associated factors during embryogenesis. Here, we probe the spatio-temporal expression patterns of several piRNA pathway components during early stages of development. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL21306
62 Samples
Download data: BED, BW
Series
Accession:
GSE160778
ID:
200160778
12.

De novo piRNA cluster formation in the Drosophila germline triggered by transgenes containing a transcribed transposon fragment

(Submitter supplied) PIWI interacting RNAs (piRNAs) provide defense against transposable element (TE) expansion in the germline of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the LINE-like I transposon lead to an acquired TE resistance in Drosophila. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
12 Samples
Download data: TXT
Series
Accession:
GSE41780
ID:
200041780
13.

piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

(Submitter supplied) PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BW, TXT
Series
Accession:
GSE71775
ID:
200071775
14.

Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline

(Submitter supplied) Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL13304 GPL21306
9 Samples
Download data: BEDGRAPH, SF, TXT
Series
Accession:
GSE186867
ID:
200186867
15.

Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries

(Submitter supplied) Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
108 Samples
Download data: TXT
Series
Accession:
GSE102013
ID:
200102013
16.

PIWI-associated piRNA in Drosophila melanogaster ovary

(Submitter supplied) Heterochromatin, representing the silenced state of transcription, largely consists of transposon-enriched and highly repetitive sequences. Implicated in heterochromatin formation and transcriptional silencing in Drosophila are PIWI and repeat-associated small interfering RNAs (rasiRNAs). Despite this, the role of PIWI in rasiRNA expression and heterochromatic silencing remains unknown. Here we report the identification and characterization of 12,903 PIWI-interacting RNAs (piRNAs) in Drosophila, demonstrating that rasiRNAs represent a subset of piRNAs. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL5922
1 Sample
Download data: TXT
Series
Accession:
GSE9138
ID:
200009138
17.

Maternal inherited siRNA initiate piRNA cluster formation

(Submitter supplied) In order to control transposable element (TE) activity, PIWI-interacting RNAs (piRNAs) have been evolved to silence TE transcriptionally and post-transcriptionally, and produced from heterochromatic genomic loci, called piRNA cluster. Maternal inherited piRNAs transmission is considered as the key step of piRNA cluster maintenance and induction of de nove piRNA cluster formation, however, how the original piRNAs were produced without maternal piRNAs deposition remains unclear. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13304
104 Samples
Download data: TXT
Series
Accession:
GSE193091
ID:
200193091
18.

Drosophila OSS cell small RNA libraries

(Submitter supplied) High-throughput sequencing of Drosophila melanogaster small RNAs from OSS cells. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL9058
4 Samples
Download data
Series
Accession:
GSE15378
ID:
200015378
19.

The histone demethylase KDM3 prevents auto-immune piRNAs production in Drosophila

(Submitter supplied) In animals, genome integrity of the germ line is protected from transposable element (TE) activity by small, non-coding, dedicated RNAs acting as an immune system against TEs, and called PIWI-interacting RNAs (piRNAs) (Czech et al. 2018, Ozata et al. 2018). In Drosophila, the production of piRNAs is initiated from heterochromatic loci containing remnants of TEs and enriched in histone H3 trimethylated on lysine 9 (H3K9me3) (Brennecke et al. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL19132 GPL17275
50 Samples
Download data: BIGWIG, FASTA, TXT
Series
Accession:
GSE203279
ID:
200203279
20.

piRNA-mediated regulation of transposon alternative splicing in soma and germline

(Submitter supplied) Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. We show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17275
20 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE103582
ID:
200103582
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_67488ca9952672179f090cda|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center