U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Binding site turnover produces pervasive quantitative changes in TF binding between closely related Drosophila species

(Submitter supplied) [original title] Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. We demonstrate extensive quantitative changes in binding of six factors that control early embryonic patterning between two closely related Drosophila species
Organism:
Drosophila melanogaster; Drosophila yakuba
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9061 GPL10061
20 Samples
Download data: GFF, TXT
Series
Accession:
GSE20369
ID:
200020369
2.

Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition

(Submitter supplied) The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning and other essential developmental processes. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11203
3 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE30757
ID:
200030757
3.

The zinc finger protein Zelda plays a key role in the maternal to zygotic transition in Drosophila

(Submitter supplied) In all animals, the initial events of embryogenesis are controlled by maternal gene products that are deposited into the developing oocyte. At some point after fertilization, control of embryogenesis is transferred to the zygotic genome in a process called the maternal to zygotic transition (MZT). During this time maternal RNAs are degraded and zygotic RNAs are transcribed1. A long standing question has been, what factors regulate these events? The recent findings that microRNAs and Smaugs mediate maternal transcript degradation brought new life to this old problem2,3, however, the transcription factors that activate zygotic gene expression remained elusive. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by array
Dataset:
GDS3477
Platform:
GPL1322
6 Samples
Download data: CEL
Series
Accession:
GSE11231
ID:
200011231
4.
Full record GDS3477

Zinc finger protein Zelda deficiency effect on the embryo

Analysis of embryos lacking the zinc finger protein Zelda. Results provide insight into the role of Zelda in the transfer of control of embryogenesis to the zygotic genome during the process of maternal-to-zygotic transition.
Organism:
Drosophila melanogaster
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL1322
Series:
GSE11231
6 Samples
Download data: CEL
5.

Zelda determines chromatin accessibility during the Drosophila maternal-to-zygotic transition

(Submitter supplied) We used FAIRE-seq to perform genome-wide profiling of open chromatin in 2-3 hour Drosophila embryos lacking maternal ZLD (zldM-) and in paired control embryos (yw). We demonstrate that ZLD is required to establish or maintain specific regions of open chromatin. Using single embryo RNA-seq data (from stage 5 yw and zldM- embryos) we show that loci that lose accessibility in zldM- embryos require ZLD for robust expression of associated genes. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL13304
6 Samples
Download data: BIGWIG, TXT
Series
Accession:
GSE65837
ID:
200065837
6.

GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL21306 GPL19132 GPL25244
50 Samples
Download data
Series
Accession:
GSE152773
ID:
200152773
7.

GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo [RNA-seq]

(Submitter supplied) Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal- to-zygotic transition (MZT). more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19132
6 Samples
Download data: TXT
Series
Accession:
GSE152772
ID:
200152772
8.

GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo [ATAC-seq]

(Submitter supplied) Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal-to-zygotic transition (MZT). more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL25244
12 Samples
Download data: BED, BW
Series
Accession:
GSE152771
ID:
200152771
9.

GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo [ChIP-seq]

(Submitter supplied) Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal-to-zygotic transition (MZT). more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21306
32 Samples
Download data: BED, BW
Series
Accession:
GSE152770
ID:
200152770
10.

Establishment of regions of genomic activity during the Drosophila maternal-to-zygotic transition

(Submitter supplied) A conspicuous feature of early animal development is the lack of transcription from the embryonic genome, and it typically takes several hours to several days (depending on the species) until widespread transcription of the embryonic genome begins. Although this transition is ubiquitous, relatively little is known about how the shift from a transcriptionally quiescent to transcriptionally active genome is controlled. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13304
50 Samples
Download data: WIG, XLS
Series
Accession:
GSE58935
ID:
200058935
11.

Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation

(Submitter supplied) A central question in biology is how enhancers are made accessible. The Drosophila embryo is a good model system to study this question as the gene regulatory networks regulating early developmental events have been well characterized. Zelda (Zld) is a uniformly distributed transcription factor (TF) integral to these networks, acting prior to and in collaboration with the patterning TFs to regulate target enhancers. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11203 GPL13304 GPL17275
32 Samples
Download data: BW, TXT
Series
Accession:
GSE65441
ID:
200065441
12.

Genome-wide Ribbon occupancy and gene expression profiling of wildtype and ribbon mutant Drosophila mid through late stage embryos

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9058 GPL1322
10 Samples
Download data: BED, BEDGRAPH, CEL
Series
Accession:
GSE73781
ID:
200073781
13.

ChIP-seq data from fkh-Gal4::UAS-rib-GFP and sage-Gal4::UAS-rib-GFP mid- through late-stage Drosophila embryos

(Submitter supplied) Transcription factors, which regulate the spatiotemporal patterns of gene expression during organogenesis, often regulate multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape changes during elongation of the Drosophila salivary gland (SG). more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9058
4 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE73780
ID:
200073780
14.

Gene expression data from wild-type (WT) and ribbon (rib) mutant Drosophila mid through late stage embryos

(Submitter supplied) Transcription factors, which regulate the spatiotemporal patterns of gene expression during organogenesis, often regulate multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape changes during elongation of the Drosophila salivary gland (SG). more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by array
Platform:
GPL1322
6 Samples
Download data: CEL
Series
Accession:
GSE72598
ID:
200072598
15.

Genome-wide identification of Grainy head targets in Drosophila

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL1322
6 Samples
Download data: CEL
Series
Accession:
GSE102551
ID:
200102551
16.

Genome-wide identification of Grainy head targets in Drosophila [ChIP-seq]

(Submitter supplied) Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions, we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9061
3 Samples
Download data: BED, FASTA
Series
Accession:
GSE102550
ID:
200102550
17.

Genome-wide identification of Grainy head targets in Drosophila [gene expression]

(Submitter supplied) Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions, we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by array
Platform:
GPL1322
6 Samples
Download data: CEL
Series
Accession:
GSE102549
ID:
200102549
18.

Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network

(Submitter supplied) Contemporary high throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs and cis-regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including chromatin immunoprecipitation sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF co-occupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13304
3 Samples
Download data: BED, WIG
Series
Accession:
GSE38402
ID:
200038402
19.

Spatially uniform establishment of chromatin accessibility in the early Drosophila embryo

(Submitter supplied) As the Drosophila embryo transitions from the use of maternal RNAs to zygotic transcription, domains of “open” chromatin, with relatively low nucleosome density and specific histone marks, are established at promoters and enhancers involved in patterned embryonic transcription. However it remains unclear whether open chromatin is a product of activity - transcription at promoters and patterning transcription factor binding at enhancers - or whether it is established by independent mechanisms. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21306
7 Samples
Download data: WIG
Series
Accession:
GSE104957
ID:
200104957
20.

Identification of a conserved maternal-specific repressive domain in Zelda using Cas9-mediated mutagenesis

(Submitter supplied) In nearly all metazoans, the earliest stages of development are controlled by maternally deposited mRNAs and proteins. The zygotic genome only becomes transcriptionally active hours later. Transcriptional activation is tightly coordinated with the degradation of maternally provided mRNAs during this maternal-to-zygotic transition (MZT). In Drosophila melanogaster, the transcription factor Zelda plays an essential role in widespread activation of the zygotic genome. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13304
6 Samples
Download data: CSV
Series
Accession:
GSE103914
ID:
200103914
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_675b1bee1fc51b7b012c105f|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center