show Abstracthide AbstractMarine picocyanobacteria (Prochlorococcus and Synechococcus), the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, we find that genes for breaking down chitin - an abundant source of organic carbon that primarily exists as particles - are widespread in this group. We further show that cells with a chitin degradation pathway display chitin degradation activity, attach to chitin particles and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated form of chitin. Marine chitin is largely derived from arthropods, whose roots lie in the early Phanerozoic, 520-535 million years ago, close to when marine picocyanobacteria began colonizing the ocean. We postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Transitioning to a constitutive planktonic life without chitin associations along a major early branch within the Prochlorococcus tree led to cellular and genomic streamlining. Our work highlights how coevolution across trophic levels creates metabolic opportunities and drives biospheric expansions.