The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential "filament initiation function" performed by this isoform.
Keywords: M‐line; muscle development; myosin assembly; striated muscle; thick filament.
© 2024 Wiley Periodicals LLC.