Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
AAA family ATPase
This family includes a wide variety of AAA domains including some that have lost essential nucleotide binding residues in the P-loop. (from Pfam)
P-loop NTPase
This family contains ATPases involved in plasmid partitioning [1]. It also contains the cytosolic Fe-S cluster assembling factor NBP35 which is required for biogenesis and export of both ribosomal subunits [2]. [1]. 2149583. A family of ATPases involved in active partitioning of diverse. bacterial plasmids.. Motallebi-Veshareh M, Rouch DA, Thomas CM;. Mol Microbiol 1990;4:1455-1463.. [2]. 15728363. The eukaryotic P loop NTPase Nbp35: an essential component of. the cytosolic and nuclear iron-sulfur protein assembly. machinery.. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U,. Lill R;. Proc Natl Acad Sci U S A. 2005;102:3266-3271. (from Pfam)
division plane positioning ATPase MipZ
MipZ is an ATPase that forms a complex with the chromosome partitioning protein ParB near the chromosomal origin of replication [1]. It is responsible for the temporal and spatial regulation of FtsZ ring formation [1]. [1]. 16839883. MipZ, a spatial regulator coordinating chromosome segregation. with cell division in Caulobacter.. Thanbichler M, Shapiro L;. Cell. 2006;126:147-162. (from Pfam)
cellulose synthase operon protein YhjQ/BcsQ
This is a family of bacterial proteins involved in cellulose biosynthesis. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). A second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The family does contain a P-loop sequence motif suggesting a nucleotide binding function, but this has not been confirmed. [1]. 11260463. The multicellular morphotypes of Salmonella typhimurium and. Escherichia coli produce cellulose as the second component of. the extracellular matrix.. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U;. Mol Microbiol 2001;39:1452-1463. (from Pfam)
CobQ/CobB/MinD/ParA nucleotide binding domain
This family consists of various cobyrinic acid a,c-diamide synthases. These include CbiA Swiss:P29946 and CbiP Swiss:Q05597 from S.typhimurium [4], and CobQ Swiss:Q52686 from R. capsulatus [3]. These amidases catalyse amidations to various side chains of hydrogenobyrinic acid or cobyrinic acid a,c-diamide in the biosynthesis of cobalamin (vitamin B12) from uroporphyrinogen III. Vitamin B12 is an important cofactor and an essential nutrient for many plants and animals and is primarily produced by bacteria [4]. The family also contains dethiobiotin synthetases as well as the plasmid partitioning proteins of the MinD/ParA family [6]. [1]. 9742225. Cobalamin (vitamin B12) biosynthesis: identification and. characterization of a Bacillus megaterium cobI operon.. Raux E, Lanois A, Warren MJ, Rambach A, Thermes C;. Biochem J 1998;335:159-166.. [2]. 9742226. Cobalamin (vitamin B12) biosynthesis: functional. characterization of the Bacillus megaterium cbi genes required. to convert uroporphyrinogen III into cobyrinic acid a,c-diamide.. Raux E, Lanois A, Rambach A, Warren MJ, Thermes C;. Biochem J 1998;335:167-173.. [3]. 7635831. Identification and sequence analysis of genes involved in late. steps in cobalamin (vitamin B12) synthesis in Rhodobacter. capsulatus.. Pollich M, Klug G;. J Bacteriol 1995;177:4481-4487.. [4]. 8501034. Characterization of the cobalamin (vitamin B12) biosynthetic. genes of Salmonella typhimurium.. Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church. GM;. J Bacteriol 1993;175:3303-3316.. [5]. 10966576. The synthetase domains of cobalamin biosynthesis. amidotransferases cobB and cobQ belong to a . TRUNCATED at 1650 bytes (from Pfam)
ArsA-related P-loop ATPase
This Pfam family represents a conserved domain, which is sometimes repeated, in an anion-transporting ATPase. The ATPase is involved in the removal of arsenate, antimonite, and arsenate from the cell. [1]. 1704144. The plasmid-encoded arsenical resistance pump: an. anion-translocating ATPase.. Rosen BP;. Res Microbiol 1990;141:336-341. (from Pfam)
septum site-determining protein MinD
This HMM describes the bacterial and chloroplast form of MinD, a multifunctional cell division protein that guides correct placement of the septum. The homologous archaeal MinD proteins, with many archaeal genomes having two or more forms, are described by a separate model.
septum site-determining protein MinD, one of the three protein products of the min operon, is a membrane ATPase required for proper placement of the cell division site at the midcell position through the activation and regulation of MinC and MinE
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on