U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from Protein

Items: 12

1.

E1-E2 ATPase

Date:
2024-08-14
Family Accession:
NF012350.5
Method:
HMM
2.

cation-transporting P-type ATPase

Members of this families are involved in Na+/K+, H+/K+, Ca++ and Mg++ transport. (from Pfam)

Date:
2024-08-14
Family Accession:
NF012893.5
Method:
HMM
3.

HAD family hydrolase

This family is structurally different from the alpha/beta hydrolase family (Pfam:PF00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain [1]. Those members with the characteristic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria [2]. [1]. 8702766. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas. sp. YL. An alpha/beta hydrolase structure that is different from. the alpha/beta hydrolase fold.. Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K;. J Biol Chem 1996;271:20322-20330.. [2]. 20485265. A mitochondrial phosphatase required for cardiolipin. biosynthesis: the PGP phosphatase Gep4.. Osman C, Haag M, Wieland FT, Brugger B, Langer T;. EMBO J. 2010;29:1976-1987 (from Pfam)

Date:
2024-08-14
Family Accession:
NF012905.5
Method:
HMM
4.
new record, indexing in progress
Family Accession:
5.
new record, indexing in progress
Family Accession:
6.
new record, indexing in progress
Family Accession:
7.
new record, indexing in progress
Family Accession:
8.
new record, indexing in progress
Family Accession:
9.
new record, indexing in progress
Family Accession:
10.
new record, indexing in progress
Family Accession:
11.

plasma-membrane proton-efflux P-type ATPase

This model describes the plasma membrane proton efflux P-type ATPase found in plants, fungi, protozoa, slime molds and archaea. The best studied representative is from yeast [1].

GO Terms:
Molecular Function:
P-type proton-exporting transporter activity (GO:0008553)
Cellular Component:
membrane (GO:0016020)
Biological Process:
proton export across plasma membrane (GO:0120029)
Date:
2024-05-30
Family Accession:
TIGR01647.1
Method:
HMM
12.

HAD-IC family P-type ATPase

The P-type ATPases are a large family of trans-membrane transporters acting on charged substances. The distinguishing feature of the family is the formation of a phosphorylated intermediate (aspartyl-phosphate) during the course of the reaction. P-type ATPases typically consist of only a single subunit encompassing the ATPase and ion translocation pathway, but these functions are split in some systems. The catalytic core of a P-type ATPase is a haloacid dehalogenase(HAD)-type aspartate-nucleophile hydrolase. The location of the ATP-binding loop in between the first and second HAD conserved catalytic motifs defines these enzymes as members of subfamily I of the HAD superfamily (see also TIGR01493, TIGR01509, TIGR01549, TIGR01544 and TIGR01545). Based on these classifications, the P-type ATPase _superfamily_ corresponds to the IC subfamily of the HAD superfamily.

GO Terms:
Molecular Function:
transporter activity (GO:0005215)
Molecular Function:
ATP binding (GO:0005524)
Cellular Component:
membrane (GO:0016020)
Molecular Function:
ATP hydrolysis activity (GO:0016887)
Date:
2022-10-11
Family Accession:
TIGR01494.1
Method:
HMM
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center