Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
TraM recognition domain-containing protein
This family includes both TraG and TraD as well as VirD4 proteins. TraG is essential for DNA transfer in bacterial conjugation. These proteins are thought to mediate interactions between the DNA-processing (Dtr) and the mating pair formation (Mpf) systems [1]. This domain interacts with the relaxosome component TraM via the latter's tetramerisation domain. TraD is a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore [2]. [1]. 11976307. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates?. Schroder G, Krause S, Zechner EL, Traxler B, Yeo HJ, Lurz R, Waksman G, Lanka E;. J Bacteriol 2002;184:2767-2779. [2]. 18717787. Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial conjugation. Lu J, Wong JJ, Edwards RA, Manchak J, Frost LS, Glover JN;. Mol Microbiol. 2008;70:89-99. (from Pfam)
TraD N-terminal domain-containing protein
This domain family is found in bacteria, and is typically between 96 and 107 amino acids in length. The family is found in association with Pfam:PF10412. TraD is a cytoplasmic membrane protein with possible DNA binding domains. It is part of the bacterial F sex factor complex. [1]. 2680768. Nucleotide sequence of the traD region in the Escherichia coli F sex factor. Jalajakumari MB, Manning PA;. Gene. 1989;81:195-202. (from Pfam)
type IV secretion system DNA-binding domain-containing protein
The plasmid conjugative coupling protein TrwB forms hexamers from six structurally very similar protomers [1]. This hexamer contains a central channel running from the cytosolic pole (made up by the AADs) to the membrane pole ending at the transmembrane pore shaped by 12 transmembrane helices, rendering an overall mushroom-like structure. The TrwB_AAD (all-alpha domain) domain appears to be the DNA-binding domain of the structure. TrwB, a basic integral inner-membrane nucleoside-triphosphate-binding protein, is the structural prototype for the type IV secretion system coupling proteins, a family of proteins essential for macromolecular transport between cells and export [2]. [1]. 11214325. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M;. Nature. 2001;409:637-641. [2]. 11748238. Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein. Detailed structural features and mapping of the active site cleft. Gomis-Ruth FX, Moncalian G, de la Cruz F, Coll M;. J Biol Chem. 2002;277:7556-7566. (from Pfam)
type IV secretory system conjugative DNA transfer family protein
These proteins contain a P-loop and walker-B site for nucleotide binding. TraG is essential for DNA transfer in bacterial conjugation. These proteins are thought to mediate interactions between the DNA-processing (Dtr) and the mating pair formation (Mpf) systems [2]. The C-terminus of this domain interacts with the relaxosome component TraM via the latter's tetramerisation domain. TraD is a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore [3]. The family contains a number of different DNA transfer proteins [4]. [1]. 9767571. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Dougherty BA, Hill C, Weidman JF, Richardson DR, Venter JC, Ross RP;. Mol Microbiol 1998;29:1029-1038. [2]. 11976307. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates?. Schroder G, Krause S, Zechner EL, Traxler B, Yeo HJ, Lurz R, Waksman G, Lanka E;. J Bacteriol 2002;184:2767-2779. [3]. 18717787. Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial conjugation. Lu J, Wong JJ, Edwards RA, Manchak J, Frost LS, Glover JN;. Mol Microbiol. 2008;70:89-99. [4]. 17259614. Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Gunton JE, Gilmour MW, Baptista KP, Lawley TD, Taylor DE;. Microbiology. 2007;153:428-441. (from Pfam)
type IV conjugative transfer system coupling protein TraD
type IV conjugative transfer system coupling protein TraD is conjugative DNA transfer (CDT) that is the unidirectional transfer of ssDNA plasmid from a donor to a recipient cell
The TraD protein performs an essential coupling function in conjugative type IV secretion systems. This protein sits at the inner membrane in contact with the assembled pilus and its scaffold as well as the relaxosome-plasmid DNA complex (through TraM) [1,2].
F-type conjugal transfer protein TraD
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on