U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from Protein

Items: 1 to 20 of 35

1.

GDP-mannose 4,6-dehydratase

Date:
2024-08-14
Family Accession:
NF027681.5
Method:
HMM
2.

NAD(P)H-binding protein

Date:
2024-08-14
Family Accession:
NF024852.5
Method:
HMM
3.

KR domain-containing protein

This enzymatic domain is part of bacterial polyketide synthases and catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group [1]. [1]. 23790488. Structural and stereochemical analysis of a modular polyketide. synthase ketoreductase domain required for the generation of a. cis-alkene.. Bonnett SA, Whicher JR, Papireddy K, Florova G, Smith JL,. Reynolds KA;. Chem Biol. 2013;20:772-783. (from Pfam)

Date:
2024-08-14
Family Accession:
NF020243.5
Method:
HMM
4.

Polysaccharide biosynthesis protein C-terminal

This domain is found to the C-terminus of the Pfam:PF02719 domain in bacterial polysaccharide biosynthesis enzymes including the capsule protein CapD [1] and several putative epimerases/dehydratases. [1]. 7961465. Sequence analysis and molecular characterization of genes. required for the biosynthesis of type 1 capsular polysaccharide. in Staphylococcus aureus.. Lin WS, Cunneen T, Lee CY;. J Bacteriol 1994;176:7005-7016. (from Pfam)

GO Terms:
Molecular Function:
UDP-glucose 4-epimerase activity (GO:0003978)
Biological Process:
lipopolysaccharide biosynthetic process (GO:0009103)
Date:
2024-08-14
Family Accession:
NF020074.5
Method:
HMM
5.

SDR family oxidoreductase

This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. [1]. 9351246. The Arabidopsis MALE STERILITY 2 protein shares similarity with. reductases in elongation/condensation complexes.. Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan. BJ, Stiekema WJ, Scott R, Pereira A;. Plant J 1997;12:615-623. (from Pfam)

Date:
2024-08-14
Family Accession:
NF019605.5
Method:
HMM
6.

NAD(P)-binding domain-containing protein

Date:
2024-08-14
Family Accession:
NF015747.5
Method:
HMM
7.

NmrA family NAD(P)-binding protein

NmrA is a negative transcriptional regulator involved in the post-translational modification of the transcription factor AreA. NmrA is part of a system controlling nitrogen metabolite repression in fungi [1]. This family only contains a few sequences as iteration results in significant matches to other Rossmann fold families. [1]. 11726498. The structure of the negative transcriptional regulator NmrA. reveals a structural superfamily which includes the short-chain. dehydrogenase/reductases.. Stammers DK, Ren J, Leslie K, Nichols CE, Lamb HK, Cocklin S,. Dodds A, Hawkins AR;. EMBO J 2001;20:6619-6626. (from Pfam)

Date:
2024-08-14
Family Accession:
NF017206.5
Method:
HMM
8.

sugar nucleotide-binding protein

L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesised by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide [1,2]. [1]. 12057193. Variation on a Theme of SDR. dTDP-6-Deoxy-L- lyxo-4-Hexulose. Reductase (RmlD) Shows a New Mg(2+)-Dependent Dimerization Mode.. Blankenfeldt W, Kerr ID, Giraud MF, McMiken HJ, Leonard G,. Whitfield C, Messner P, Graninger M, Naismith JH;. Structure (Camb) 2002;10:773-786.. [2]. 10802738. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new. class of epimerase.. Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH;. Nat Struct Biol 2000;7:398-402. (from Pfam)

Date:
2024-08-14
Family Accession:
NF016228.5
Method:
HMM
9.

polysaccharide biosynthesis protein

This is a family of diverse bacterial polysaccharide biosynthesis proteins including the CapD protein (Swiss:P39853) [1], WalL protein (Swiss:O86159) mannosyl-transferase (Swiss:O05349) [2] and several putative epimerases (e.g. WbiI Swiss:O69130). [1]. 7961465. Sequence analysis and molecular characterization of genes. required for the biosynthesis of type 1 capsular polysaccharide. in Staphylococcus aureus.. Lin WS, Cunneen T, Lee CY;. J Bacteriol 1994;176:7005-7016.. [2]. 9079898. Identification of additional genes required for O-antigen. biosynthesis in Vibrio cholerae O1.. Fallarino A, Mavrangelos C, Stroeher UH, Manning PA;. J Bacteriol 1997;179:2147-2153. (from Pfam)

Date:
2024-08-14
Family Accession:
NF014740.5
Method:
HMM
10.

NAD-dependent epimerase/dehydratase family protein

This family of proteins utilise NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. [1]. 9174344. Structural analysis of UDP-sugar binding to UDP-galactose. 4-epimerase from Escherichia coli.. Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden. HM;. Biochemistry 1997;36:6294-6304. (from Pfam)

GO Terms:
Molecular Function:
catalytic activity (GO:0003824)
Date:
2024-08-14
Family Accession:
NF013530.5
Method:
HMM
11.

3-beta hydroxysteroid dehydrogenase/isomerase family

The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyses the oxidation and isomerisation of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones. [1]. 1562516. Structure and tissue-specific expression of 3. beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in. human and rat classical and peripheral steroidogenic tissues.. Labrie F, Simard J, Luu-The V, Pelletier G, Belanger A, Lachance. Y, Zhao HF, Labrie C, Breton N, de Launoit Y, et al. J Steroid Biochem Mol Biol 1992;41:421-435. (from Pfam)

GO Terms:
Molecular Function:
3-beta-hydroxy-delta5-steroid dehydrogenase (NAD+) activity (GO:0003854)
Biological Process:
steroid biosynthetic process (GO:0006694)
Molecular Function:
oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor (GO:0016616)
Date:
2024-08-14
Family Accession:
NF013255.5
Method:
HMM
12.
new record, indexing in progress
Family Accession:
13.
new record, indexing in progress
Family Accession:
14.
new record, indexing in progress
Family Accession:
15.
new record, indexing in progress
Family Accession:
16.
new record, indexing in progress
Family Accession:
17.
new record, indexing in progress
Family Accession:
18.
new record, indexing in progress
Family Accession:
19.
new record, indexing in progress
Family Accession:
20.
new record, indexing in progress
Family Accession:
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center