Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Squalene epoxidase
This domain is found in squalene epoxidase (SE) and related proteins which are found in taxonomically diverse groups of eukaryotes and also in bacteria. SE was first cloned from Saccharomyces cerevisiae where it was named ERG1. It contains a putative FAD binding site and is a key enzyme in the sterol biosynthetic pathway [1]. Putative transmembrane regions are found to the protein's C-terminus. [1]. 9161422. Cloning and expression of squalene epoxidase from the pathogenic yeast Candida albicans. Favre B, Ryder NS;. Gene 1997;189:119-126. (from Pfam)
FAD-dependent monooxygenase
This domain is involved in FAD binding in a number of enzymes. [1]. 1409567. Crystal structure of the reduced form of p-hydroxybenzoate hydroxylase refined at 2.3A resolution. Schreuder HA, van der Laan JM, Swarte MB, Kalk KH, Hol WG, Drenth J;. Proteins 1992;14:178-190. (from Pfam)
3-demethoxyubiquinol 3-hydroxylase
Catalyzes the formation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol from 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol; functions in the biosynthesis of ubiquinone or coenzyme Q
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase catalyzes the formation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol from 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol
ubiquinone biosynthesis hydroxylase, UbiH/UbiF/VisC/COQ6 family
This HMM represents a family of FAD-dependent hydroxylases (monooxygenases) which are all believed to act in the aerobic ubiquinone biosynthesis pathway [1]. A separate set of hydroxylases, as yet undiscovered, are believed to be active under anaerobic conditions [2]. In E. coli three enzyme activities have been described, UbiB (which acts first at position 6, see TIGR01982), UbiH (which acts at position 4, [3]) and UbiF (which acts at position 5, [4]). UbiH and UbiF are similar to one another and form the basis of this subfamily. Interestingly, E. coli contains another hydroxylase gene, called visC, that is highly similar to UbiF, adjacent to UbiH and, when mutated, results in a phenotype similar to that of UbiH (which has also been named visB) [5]. Several other species appear to have three homologs in this family, although they assort themselves differently on phylogenetic trees (e.g. Xylella and Mesorhizobium) making it difficult to ascribe a specific activity to each one. Eukaryotes appear to have only a single homolog in this subfamily (COQ6, [6]) which complements UbiH, but also possess a non-orthologous gene, COQ7 which complements UbiF.
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on