Skip to main content
Genetics and Molecular Biology logoLink to Genetics and Molecular Biology
. 2023 Mar 6;46(1 Suppl 2):e20220266. doi: 10.1590/1678-4685-GMB-2022-0266

Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts

Julia Takuno Hespanhol 1,*, Lior Karman 1,*, Daniel Enrique Sanchez-Limache 1, Ethel Bayer-Santos 1
PMCID: PMC9990079  PMID: 36880694

Abstract

Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.

Keywords: Antibiotics, bacteriocins, effectors, DNase, RNase

Introduction

Bacteria live in dense polymicrobial communities constantly competing for resources and use either exploitative competition in which molecules like siderophores can be used to improve the acquisition of micronutrients; or interference competition in which cytotoxic molecules are used to inactive target cells (Granato et al., 2019). During evolution, bacteria have evolved a diverse array of weapons to inhibit the growth or kill competitors, which are broadly divided into contact-independent and contact-dependent antagonistic mechanisms (Peterson et al., 2020). These weapons specialized for biological conflicts evolved to target many cellular components essential for life, such as the genetic information flow through the central dogma, the cell wall, membranes, and key molecules like NAD+. As bacteria have been fighting these microscopic battles for millions of years using diverse antimicrobial molecules, it is not a surprise that studies on bacteria preserved in frozen glaciers identified the presence of antibiotic resistance genes that pre-dated human discovery of the first antibiotic (Mindlin and Petrova, 2017). In this review, we will examine molecules such as antibiotics, bacteriocins and effectors produced by bacteria and used during interbacterial conflicts to target DNA and several types of RNAs. We will end by highlighting the underappreciated but important role of these molecules in promoting antimicrobial resistance in natural environments.

Molecules of the central dogma

In molecular biology, the central dogma is an explanation of the flow of genetic information within a biological system. It refers to the information passing from DNA to RNA, and RNA to proteins (Crick, 1970; Morange, 2009). The machinery associated with their synthesis are among the most conserved and (arguably) important molecules within a living cell. DNA and RNA are polymers of nucleotides, which are composed of a nitrogenous base, a pentose sugar, and a phosphate group (Rich, 1959; Minchin and Lodge, 2019). The bases are either purines (adenine or guanine), or pyrimidines (cytosine and thymine for DNA or uracil for RNA). The nucleotides are connected by phosphodiester bonds between the 5’-phosphate group and the 3’-hydroxyl group, while the bases adenine/thymine (or adenine/uracil for RNA) and guanine/cytosine establish hydrogen bonds (Rich, 1959; Minchin and Lodge, 2019).

DNA replication occurs in a semiconservative manner (Meselson and Stahl, 1958; Hanawalt, 2004). Helicases use energy of ATP hydrolysis to open the double-strand (Abdel-Monem et al., 1976; Oakley, 2019), DNA primases synthesizes RNA primers that will be used by DNA polymerases (Scherzinger et al., 1977; Oakley, 2019), while topoisomerases help in the unwinding process (Wang, 1971). Preservation of the integrity of the genomic information is fundamental for life and there are many DNA repair mechanisms that can either correct errors originated during replication or fix damages induced by external agents (Schärer, 2003). Damaged nucleotides can be repaired by base excision repair (BER) or nucleotide excision repair (NER) (Uphoff and Sherratt, 2017). BER recognizes abnormal bases in the nucleotides along the DNA molecule, such as uracil that spawn from cytosine deamination. BER includes the hydrolyzation of the abnormal base from the nucleotide, followed by the cleavage of the DNA by endonucleases (Uphoff and Sherratt, 2017). Meanwhile, NER removes an entire nucleotide that causes large distortions in the DNA double-helix, and includes the recognition of the lesion by the enzymes UvrA and UvrB, followed by incision at flanking sites of the distortion by UvrC endonuclease and displacement of the damaged strand by UvrD helicase (Uphoff and Sherratt, 2017). After excision from both BER or NER, DNA polymerase I and DNA ligase resynthesize DNA in the gap (Uphoff and Sherratt, 2017). A double-strand break (DSB) can be repaired by homologous recombination (HR) that preserves the previous genetic information or by non-homologous end-joining (NHEJ), which can lead to the loss or alteration of the original information (Wyman et al., 2004; Shuman and Glickman, 2007).

The information stored in DNA is decoded into RNAs by RNA polymerases (RNAP) (Ebright, 2000). The transcribed RNA could be a transfer RNA (tRNA), a ribosomal RNA (rRNA) or a messenger RNA (mRNA). In bacteria, the 70S ribosome is composed by two subunits: the 30S subunit comprises the 16S rRNA and 21 proteins; while the 50S subunit contains the 23S rRNA, 5S rRNA and 33 proteins (Deutscher, 2009). In several cases, the final step in the expression of the information contained in genes is the synthesis of proteins (Rodnina, 2018), which begins with the association of the ribosome with an mRNA via interaction of the 30S subunit with the Shine-Dalgarno sequence in the mRNA (Shine and Dalgarno, 1974). The elongation follows as the codon in the mRNA is exposed to match the corresponding anti-codon of an aminoacyl-tRNA. The peptidyl transferase center of the ribosome establishes the peptide bond, which is mediated by a catalytic rRNA (Monro, 1967). Overall, fidelity and effectiveness of these steps are required for the maintenance of genetic information and its transfer into molecules that perform work inside living cells.

Bacterial antagonistic mechanisms

Bacteria inhabit complex environments where they interact and compete with other organisms, both prokaryotic and eukaryotic. Several systems specialized in biological conflict, both defensive and offensive, emerged during evolution to combat competitors, predators, and parasites (Figure 1). These systems participate in an arms race in which their genes have a high rate of evolution. Probably the most well-known antibacterial molecules are antibiotics, which are produced by a variety of organisms (Berdy, 2005). Antibiotics are bioactive secondary metabolites not synthesized by ribosomes (Berdy, 2005). They belong to different classes, usually based on their molecular strutures, and target several metabolic processes, including those related to the central dogma (Etebu and Arikekpar, 2016). These molecules are produced and secreted in the extracellular environment by ATP-binding cassette (ABC) transporters (Méndez and Salas, 2001). Producing-bacteria are protected from antibiotics by different mechanisms, including the synthesis of efflux pumps or specific enzymes that degrade/modify the antibiotic or its target (Darby et al., 2022) (Figure 1).

Figure 1 -. Antagonistic strategies used by bacteria to counteract competitors. (A) Contact-independent antagonism. Colicins, microcins and antibiotics (red hexagon) reach targets by binding to OMRs (outer membrane receptors) prior to internalization. Autointoxication is prevented by immunity proteins, degrading/modifying proteins or efflux pumps (blue circles). Outer membrane vesicles (OMVs) deliver toxins to competing bacteria by membrane fusion. (B) Contact-dependent antagonism. T5SS presents CdiB anchored in cell membrane and CdiA extended. Receptor-binding domain (RBD) of CdiA interacts with OMR of targets to translocate CdiA-CT (red) into competitors. T6SS is anchored in the cell membrane and upon contraction propelled into target cell to deliver toxins (red hexagon). T7SS effectors (red hexagons) secreted into target cells upon contact. Outer membrane exchange (OME) events can transfer toxic proteins (red hexagons) that reach targets. Nanotubes are membrane extensions that connect two bacteria to transport toxins (red hexagons). Cognate immunity proteins produced by attacking bacteria are represented by blue circles. Created with BioRender.com.

Figure 1 -

Bacteriocins are another type of biomolecule used in antagonistic encounters that are synthesized by ribosomes and can be divided into colicins and microcins (Cascales et al., 2007). Colicins are larger bacteriocins (>10kDa) secreted by a diversity of bacteria, and Escherichia coli was the first and most extensively studied. Colicins have three domains: an N-terminal translocation domain, a central receptor-binding domain and a toxic C-terminal domain (Cascales et al., 2007). These proteins are released in the medium and are internalized by binding to specific outer membrane receptors. Colicin-producers encode immunity proteins that bind to the toxic domains to neutralize their effect (Cascales et al., 2007). The expression of these proteins is largely regulated by the SOS response to DNA damage (Walker, 1996; Cascales et al., 2007). Microcins consist of smaller polypeptides (<10kDa) that require post-translational modification prior to secretion. Microcins target closely related species via binding to outer membrane receptors, and immunity is conferred either by a specific protein that interacts with the microcin or by efflux pumps (Duquesne et al., 2007) (Figure 1).

Many types of macromolecular complexes, named protein secretion systems, are key players in bacterial antagonist interactions (Klein et al., 2020). These include the T1SS, T4SS, T5SS and T6SS of Gram-negative bacteria and T7SS of Gram-positives (Figure 1) (Klein et al., 2020). The T1SS uses glycine-zipper proteins that form large aggregates in the producer outer membrane and kill target bacteria upon contact (García-Bayona et al., 2017). The bacteria killing T4SS apparatus is evolutionarily related to the conjugative machinery and relays on the coupling protein VirD4 for effector selection and translocation into competitors through an extracellular pilus (Souza et al., 2015). A subtype of T5SS mediating contact-dependent growth inhibition (CDI) is composed of two proteins, an outer membrane protein CdiB that anchors an exoprotein with a central receptor-binding and a C-terminal toxic domain (CdiA), which interacts with an outer membrane receptor at a target cell to deliver the toxic C-terminus (Aoki et al., 2005). The T6SS is a contractile nanomachine evolutionarily related to bacteriophage tails that fire an array of effectors inside target cells at each contraction event (Hood et al., 2010; Basler, 2015). The T7SS secretes effectors with an LXG N-terminal and C-terminal toxic domains and participates in bacterial competition in Gram-positives (Cao et al., 2016). The vast array of macromolecules specialized in interbacterial conflicts reinforce their importance for bacterial fitness.

The protein complexes described above only mediate the secretion/translocation of the real key players in bacterial antagonism: the toxic molecules used to poison targets cells. In bacteria, there are two main types of toxic molecules: proteinaceous and small molecules (Ruhe et al., 2020). Proteinaceous antimicrobials contemplate ribosome-synthesized molecules, such as bacteriocins and effectors (Ruhe et al., 2020), while antibiotics are synthetized via the secondary metabolism (Walsh, 2016). Many effector proteins contain multiple domains, usually a conserved N-terminus that engage in protein export that varies according to the secretion system it is associated with (Ruhe et al., 2020); and a variable C-terminus that contains the toxic domains (Zhang et al., 2012; Ruhe et al., 2020). Effectors with this configuration are commonly known as polymorphic toxins (Zhang et al., 2012; Ruhe et al., 2020). Next, we will discuss these two main types of antibacterial molecules.

Proteinaceous Antimicrobials Targeting Nucleic Acids

A large variety of DNase and RNase domains have been predicted by in silico analysis of polymorphic toxins (Zhang et al., 2012). Most DNase effectors experimentally characterized to date belong to the His-Me finger superfamily (Pfam CL0263) or to the PD-(D/E)xK superfamily (CL0236). On the other hand, RNase effectors are more diverse and belong to the colicin D/E5 (CL0640), Ntox28 (PF15605), EndoU (CL0695) and PD-(D/E)xK (Table 1, Figure 2).

Table 1. - Antibacterial molecules that target nucleic acids.

Name Activity Classification (Pfam) Organism References
Superfamily Family/Clade
Bacteriocin
Carocin D DNase His-Me_finger (CL0263) - Pectobacterium carotovorum Roh et al., 2010
Carocin S1 DNase - - Pectobacterium carotovorum Chuang et al., 2007
Carocin S3 DNase - - Pectobacterium carotovorum Wang et al., 2020
Colicin E2 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli W3110 Schaller and Nomura, 1976
Colicin E7 DNase RNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli K317 Males and Stocker, 1980; Chak et al., 1991; Hsia et al., 2004
Colicin E8 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli J Cooper and James 1984; Toba et al., 1988
Colicin E9 DNase RNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli J Cooper and James 1984; Chak et al., 1991; Garinot-Schneider et al., 1996; Pommer et al., 1998
Klebicin A DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Klebsiella pneumoniae Cooper and James, 1985; James et al., 1987
Klebicin B DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Klebsiella pneumoniae Riley et al., 2001
Pyocin AP41 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas aeruginosa Sano and Kageyama, 1981; Sano et al., 1993
Pyocin S1 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas aeruginosa Sano et al., 1993
Pyocin S2 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas aeruginosa Ohkawa et al., 1973; Sano et al., 1993
Pyocin S3 DNase - - Pseudomonas aeruginosa Duport et al., 1995
Pyocin S8 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas aeruginosa Turano et al., 2017; Turano et al., 2020
Pyocin S9 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas aeruginosa Ghequire and De Mot, 2014
Usp DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli Kurazono, 2000; Nipic et al., 2013; Zaw et al., 2013
Carocin S2 tRNase Colicin D/E5 (CL0640) Colicin_D (PF11429) Pectobacterium carotovorum Chan et al., 2011
Colicin E5 tRNase Colicin D/E5 (CL0640) Colicin_E5 (PF12106) Shigella sonnei 101BM Males and Stocker, 1982; Ogawa et al., 1999; Masaki and Ogawa, 2002
Colicin D tRNase Colicin D/E5 (CL0640) Colicin_D (PF11429) Escherichia coli K-12 W1485 Timmis and Hedges, 1972; Tomita et al., 2000; Masaki and Ogawa, 2002
Klebicin D tRNase Colicin D/E5 (CL0640) Colicin_D (PF11429) Klebsiella pneumoniae Chavan et al., 2005
Pyocin S4 tRNase Colicin D/E5 (CL0640) Colicin_E5 (PF12106) Pseudomonas aeruginosa Parret and De Mot, 2000
Pyocin S6 rRNase - E3 rRNase (PF09000) Pseudomonas aeruginosa Dingermans et al., 2016
Cloacin DF13 rRNase - E3 rRNase (PF09000) Enterobacter cloacae De Graaf et al., 1973
Colicin E3 rRNase - E3 rRNase (PF09000) Escherichia coli CA38 Pseudomonas spp. Senior and Holland, 1971; Bowman et al., 1971; Lasater et al., 1989 ; Ogawa et al., 1999
Colicin E4 rRNase - E3 rRNase (PF09000) Citrobacter 20-78 Horak, 1975; Smarda et al., 1988; Smarda et al., 2002; Hirao et al., 2004
Colicin E6 rRNase - E3 rRNase (PF09000) Shigella sonnei Males and Stocker, 1982; Sharma et al., 2002; Hirao et al., 2004
Klebicin C rRNase - E3 rRNase (PF09000) Klebsiella pneumoniae Chavan et al., 2005
Microcin B17 DNA gyrase - - Escherichia coli Pseudomonas spp. Baquero and Moreno, 1984; Moreno and Baquero 1986; Heddle et al., 2001
T4SS
Smlt4382 DNAse His-Me_finger (CL0263) AHH (PF14412) Stenotrophomonas maltophilia Bayer-Santos et al., 2019
XAC3266 DNAse His-Me_finger (CL0263) AHH (PF14412) Xanthomonas citri Souza et al., 2015
T5SS
CdiA-CT3937-2 DNase - - Dickeya dadantii Aoki et al., 2010
CdiA2-CT DNase PD-(D/E)XK (CL0236) Tox-REase 7 (PF15649) Acinetobacter baumannii Roussin et al., 2019
CdiA-CTGN05224 RNase EndoU (CL0695) EndoU_bacteria (PF14436) Klebsiella aerogenes GN05224 Michalska et al., 2018
CdiA-CTSTECO31 tRNase EndoU (CL0695) EndoU_bacteria (PF14436) Escherichia coli STEC_O31 Michalska et al., 2018
CdiA-CTII Bp1026b tRNase PD-(D/E)XK (CL0236) CdiA_C (PF18451) Burkholderia pseudomallei Morse et al., 2012
CdiA-CTE479 tRNase PD-(D/E)XK (CL0236) CdiA_C_tRNase (PF18664) Burkholderia pseudomallei Nikolakakis et al., 2012
CdiA-CTEC869 tRNase Colicin D/E5 (CL0640) - Escherichia coli EC869 Jones et al., 2017
CdiA-CTEC3006 tRNase Colicin D/E5 (CL0640) Colicin_D (PF11429) Escherichia coli EC3006 Willett et al., 2015; Gucinski et al., 2019
CdiA-CTKp342 tRNase Colicin D/E5 (CL0640) Colicin_D (PF11429) Klebsiella pneumoniae 342 Gucinski et al., 2019
CdiA-CTK96243 tRNase Colicin D/E5 (CL0640) Colicin_E5 (PF12106) Burkholderia pseudomallei Nikolakakis et al., 2012
CdiA-CTE478 tRNase Colicin D/E5 (CL0640) Colicin_E5 (PF12106) Burkholderia pseudomallei Nikolakakis et al., 2012
CdiA-CTUPEC536 tRNase - Ntox28 (PF15605) Escherichia coli UPEC536 Aoki et al., 2010; Diner et al., 2012
CdiA-CTo1 EC93 tRNase - Ntox28 (PF15605) Escherichia coli EC93 Poole et al., 2011
CdiA-CTECL rRNase - E3 rRNase (PF09000) Enterobacter cloacae Beck et al., 2014
CdiA-CTEC16 rRNase - E3 rRNase (PF09000) Dickeya chrysanthemi Beck et al., 2014
CdiA-CT49162 rRNase - E3 rRNase (PF09000) Enterobacter hormaechei Beck et al., 2014
CdiA-CT0038 rRNase - E3 rRNase (PF09000) Pseudomonas viridiflava Beck et al., 2014
T6SS
ET4 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Escherichia coli PE086 Ma et al., 2017
Hcp-ET1 DNase His-Me_finger (CL0263) HNH (PF01844) Escherichia coli STEC004 Ma et al., 2017
RhsA DNase His-Me_finger (CL0263) Endonuclea_NS_2 (PF13930) Dickeya dadantii Koskiniemi et al., 2013
RhsB DNase His-Me_finger (CL0263) HNH (PF01844) Dickeya dadantii Koskiniemi et al., 2013
Rhs2 DNase His-Me_finger (CL0263) HNH (PF01844) Serratia marcescens Alcoforado-Diniz and Coulthurst, 2015
Rhs2 DNase His-Me_finger (CL0263) AHH (PF14412) Acinetobacter baumannii Fitzsimons et al., 2018
TseI DNase His-Me_finger (CL0263) Tox-HNH-EHHH (PF15657) Aeromonas dhakensis Pei et al., 2020
Tse7 (PA0099) DNase His-Me_finger (CL0263) Tox-GHH2 (PF15635) Pseudomonas aeruginosa Hachani et al., 2014; Pissaridou et al., 2018
Tke2 DNase RNase His-Me_finger (CL0263) Colicin DNase (PF12639) Pseudomonas putida Bernal et al., 2017
Tke4 DNase RNase His-Me_finger (CL0263) Tox-SHH (PF15652) Pseudomonas putida Bernal et al., 2017
Txe1 DNase His-Me_finger (CL0263) - Pseudomonas plecoglossicida Li et al., 2022
Txe2 DNase His-Me_finger (CL0263) AHH (PF14412) Pseudomonas plecoglossicida Li et al., 2022
Txe4 DNase His-Me_finger (CL0263) Tox-SHH (PF15652) Pseudomonas plecoglossicida Li et al., 2022
VP1415 DNase His-Me_finger (CL0263) AHH (PF14412) Vibrio parahaemolyticus Salomon et al., 2014
Hcp-ET3 DNase - - Escherichia coli UT189 Ma et al., 2017
VgrG-NucSe1 DNase His-Me_finger (CL0263) HNH (PF01844) Salmonella arizonae Blondel et al., 2009; Ho et al., 2017
VPA1263 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Vibrio parahaemolyticus Salomon et al., 2014; Fridman et al., 2022
PT1 DNase - - Escherichia marmotae Nachmias et al., 2022
IdrD DNase PD-(D/E)XK (CL0236) - Proteus mirabilis Sirias et al., 2020
PoNe DNase PD-(D/E)XK (CL0236) - Vibrio parahaemolyticus Jana et al., 2019
RhsB DNase PD-(D/E)XK (CL0236) - Acidovorax citrulli Pei et al., 2022
TseT DNase PD-(D/E)XK (CL0236) Tox-REase-5 (PF15648) Pseudomonas aeruginosa Burkinshaw et al., 2018; Wen et al., 2021
TseTBg DNase RNase PD-(D/E)XK (CL0236) Tox-REase-5 (PF15648) Burkholderia gladioli Yadav et al., 2021
TseV DNase PD-(D/E)XK (CL0236) VRR_NUC (PF08774) Pseudomonas aeruginosa Wang et al., 2021
TseV2/TseV3 DNase PD-(D/E)XK (CL0236) VRR_NUC (PF08774) Salmonella bongori Hespanhol et al., 2022
Tce1 DNase - toxin_43/Ntox15 (PF15604) Pseudomonas putida Song et al., 2021
Tde1/2 DNase - toxin_43/Ntox15 (PF15604) Agrobacterium tumefaciens Ma et al., 2014; Bondage et al., 2016
SED_RS01930 RNase - Ntox47 (PF15540) Salmonella enterica Dublin Amaya et al., 2022
Tre23 ADP-ribosyltranferase - Tox-ART-HYD1 (PF15633) Photorhabdus laumondii Jurenas et al., 2021
RhsP2 ADP-ribosyltranferase - - Pseudomonas aeruginosa Bullen et al., 2022
DddA Deamination Cytidine deaminase-like (CL0109) DddA-like (PF14428) Burkholderia cenocepacia Mok et al., 2020; Moraes et al., 2021
SsdA Deamination Cytidine deaminase-like (CL0109) DYW_deaminase (PF14432) Pseudomonas syringae Moraes et al., 2021
T7SS
EsaD/EssD DNase His-Me_finger (CL0263) Endonuclea_NS_2 (PF13930) Staphylococcus aureus Cao et al., 2016; Ohr et al., 2017
YeeF DNase His-Me_finger (CL0263) Endonuclea_NS_2 (PF13930) Bacillus subtilis Holberger et al., 2012; Kaundal et al., 2020
PT7 DNase - - Bacillus cereus BAG3X2-1 Nachmias et al., 2022
YobL rRNase His-Me_finger (CL0263) LHH (PF14411) Bacillus subtilis Holberger et al., 2012
YxiD rRNase His-Me_finger (CL0263) - Bacillus subtilis Holberger et al., 2012
YqcG RNase His-Me_finger (CL0263) GH-E (PF14410) Bacillus subtilis Holberger et al., 2012
BC_0920 RNase EndoU (CL0695) EndoU_bacteria (PF14436) Bacillus cereus Holberger et al., 2012
OME
SitA1 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Myxococcus xanthus Vassallo et al., 2017
SitA2 DNase His-Me_finger (CL0263) Colicin DNase (PF12639) Myxococcus xanthus Vassallo et al., 2017
SitA3 tRNase PD-(D/E)XK (CL0236) CdiA_C (PF18451) Myxococcus xanthus Vassallo et al., 2017
Nanotube
WapA-CT168 tRNase unknown - Bacillus subtilis Koskiniemi et al., 2013
WapA-CTnatto tRNase unknown - Bacillus subtilis Koskiniemi et al., 2013
WapA-CTT-UB-10 tRNase unknown - Bacillus subtilis Koskiniemi et al., 2013
WapA-CT PY79 tRNase unknown - Bacillus subtilis Stempler et al., 2017
OMV
MafBMGI-1NEM8013 RNase EndoU (CL0695) EndoU_bacteria (PF14436) Neisseria meningitidis Jamet et al., 2015
Antibiotic
Bleomycin, Phleomycin, Tallysomycin, Zorbamycin DNase Glycopeptides Bleomycins Streptomyces verticillus Umezawa et al., 1966; Takeshita et al., 1978; Kross et al., 1982; Hecht, 2000
Calicheamicin DNase - Enediynes Micromonospora echinospora ssp. calichensis Zein et al., 1988
Daunorubicin DNase - Anthracyclines Streptomyces peucetius Marco et al., 1975
Kibdelomycin DNA gyrase - - Kibdelosporangium sp. (MA7385) Philips et al., 2011
Amycolamicin DNA gyrase - - Amycolatopsis sp. (MK575-fF) Sawa et al., 2012
Coumarin DNA gyrase - - Streptomyces spp. Maxwell and Lawson, 2003; Oblak et al., 2007
Cyclothialidine DNA gyrase - - Streptomyces filipinensis NR0484 Goetschi et al., 1993; Oblak et al., 2007
Rifamycin RNA polymerase Macrolides Ansamycin Amycolatopsis rifamycinica Sensi et al., 1959; Campbell et al., 2001; Floss and Yu, 2005
Fidaxomicin RNA polymerase Macrolides Lipiarmycin Dactylosporangium aurantiacum subsp. hamdenensis Theriault et al, 1987; Artsimovitch et al., 2012
Gentamicin, Streptomycin, Hygromycin, Neomycin, Paromomycin, Kanamycin, Spectinomycin, Kasugamycin, Spectinomycin 16S rRNA Aminoglycoside - Actinomycetes Schatz et al., 1944; Waksman and Lechevalier, 1949; Umezawa et al., 1957; Mann and Bromer, 1958; Mason et al., 1961; Weinstein et al., 1963; Wilson, 2009
Tetracycline 16S rRNA Tetracyclines - Streptomyces aureofaciens Putnam et al., 1953; Brodersen et al., 2000; Pioletti et al., 2001
Pactamycin 16S rRNA - Aminocyclopentitol Streptomyces pactum Bhuyan, 1962; Brodersen et al., 2000
Edeine 16S rRNA - Edeine Brevibacillus brevis Kurylo-Borowska, 1959; Pioletti et al., 2001
Erythromycin 23S rRNA Macrolides - Actinomycetes Schlünzen et al., 2001; Reviewed by Vázquez-Laslop and Mankin, 2018;
Lincomycin 23S rRNA - Lincosamides Streptomyces lincolnensis Mason et al., 1962
Blasticidin S 23S rRNA - Aminoacyl nucleoside Streptomyces griseochromogenes Takeuchi et al., 1958; Hansen et al., 2003
Viomycin/Capreomycin 16S rRNA 23S rRNA Cyclic peptides Tuberactinomycins Streptomyces puniceus Finlay et al., 1951; Herr and Redstone, 1966; Johansen et al, 2006

Figure 2 -. Antibiotics, bacteriocins, and effectors targeting nucleic acids. Schematic representation of the information flow through the molecules of the central dogma (DNA, RNA and protein). Antibiotics, bacteriocins, and contact-dependent effectors targeting nucleic acids either by binding and inhibition or by enzymatic cleavage are indicated. Molecules were grouped according to their protein domains: His-Me finger (green), PD-(D/E)xK (blue), Colicin D/E5 (light grey), E3-rRNAse (dark grey), antibiotics (orange), others (light red). The complete list of molecules is described in Table 1. Created with BioRender.com.

Figure 2 -

His-Me finger superfamily

The most representative superfamily of DNases is the His-Me finger, also known as HNH superfamily, named after the first characterized enzyme showing the conserved His-Asn-His residues (Wu et al., 2020). This superfamily is defined by the compact catalytic conserved ββα-fold, consisting of a β-hairpin followed by an α-helix in which a highly conserved histidine (H) is located at the end of the first β-strand and a metal-binding conserved residue in α-helix (Zn2+ or Mg2+) (Wu et al., 2020), thus the name His-Me finger. His-Me finger is thought to mediate nonspecific DNA cleavage, with the α-helix fitting into the DNA minor groove, which aligns the β-hairpin with the DNA phosphodiester backbone (Flick et al., 1998). For cleavage, the metal ion destabilizes the scissile phosphodiester and neutralize the negatively charged transition state (Maté and Kleanthous, 2004). The conserved H residue then activates a water molecule for a nucleophilic attack on the scissile phosphate to hydrolyze the bond (Yang et al., 2011). Even though the amino acid sequences of members of this superfamily are incredible variable, the compact ββα-fold and catalytic mechanism is well conserved (Jablonska et al., 2017; Wu et al., 2020). This fold is present in all kingdoms of life, and in bacteria the enzymes have variable functions spanning from genome maintenance to host defense and target offense (Wu et al., 2020).

All the characterized His-Me finger bacteriocins and effectors described to date that were empirically tested were shown to degrade genomic or plasmid DNA in a nonspecific manner (Table 1, Figure 2). These include several colicins from E. coli (Schaller and Nomura, 1976; Males and Stocker, 1980; Cooper and James, 1984; Toba et al., 1988; Chak et al., 1991; Chak et al., 1996; Garinot-Schneider et al., 1996; Pommer et al., 1998; Kurazono et al., 2000; Hsia et al., 2004; Nipič et al., 2013; Zaw et al., 2013). Other bacteria also encode bacteriocins from the His-Me superfamily, such as Pseudomonas aeruginosa (Ohkawa et al., 1973; Sano and Kageyama, 1981; Sano et al., 1993; Ghequire and De Mot, 2014; Turano et al., 2017; Turano et al., 2020), Klebsiella pneumoniae (Cooper and James, 1985; James et al., 1987; Riley et al., 2001) and Pectobacterium carotovorum (Roh et al., 2010) (Table 1).

Moreover, there are secreted effectors belonging to the His-Me superfamily (Table 1) such as T6SS effectors RhsA (rearrangement hotspot A) and RhsB from Dickeya dadantii (Koskiniemi et al., 2013). These Rhs effetors were shown to confer competitive advantage to D. dadantii, inducing loss of DAPI (4′,6-diamidino-2-phenylindole) staining in target cells and leading to plasmid degradation in overexpressing bacteria (Koskiniemi et al., 2013). Other organisms that encode T6SS effectors from the His-Me superfamily are Vibrio parahaemolyticus (Salomon et al., 2014; Fridman et al., 2022), Serratia marcescens (Alcoforado-Diniz and Coulthurst, 2015), Acinetobacter baumannii (Fitzsimons et al., 2018), E. coli (Nipič et al., 2013; Ma et al., 2017), Aeromonas dhakensis (Pei et al., 2020), and Pseudomonas spp. (Hachani et al., 2014; Bernal et al., 2017; Pissaridou et al., 2018; Li et al., 2022). In addition, the T7SS effectors EsaD (Ess-associated gene D) from Staphylococcus aureus (Cao et al., 2016; Ohr et al., 2017) and YeeF-CT from Bacillus subtilis (Holberger et al., 2012; Kaundal et al., 2020) are representatives from this superfamily. Predicted T4SS effectors also encode nuclease domains, such as Smlt4382 from Stenotrophomonas maltophilia (Bayer-Santos et al., 2019) and XAC3266 from Xanthomonas citri (Souza et al., 2015), both with AHH domain (PF14412). Besides protein secretion systems, SitA1 and SitA2 toxins from Myxococcus xanthus also belong to the His-Me superfamily and are delivered via outer membrane exchange events in which bacteria donate and receive outer membrane material from kin (Vassallo et al., 2017). The extensive list of DNases containing the conserved ββα-fold demonstrate that it is widely distributed weapon used during antagonistic interactions.

Although most toxins belonging to the His-Me finger target DNA, there are a few examples that also target RNA. Examples include colicin E7, which shows both DNase and RNase activity in vitro (Hsia et al., 2004), and colicin E9 (Pommer et al., 2001). Moreover, there are two effectors that have been shown to exclusively target RNA: YobL and YxiD from the T7SS of B. subtilis cleave rRNA in vivo (Holberger et al., 2012). These demonstrade the versatility of domains with the ββα-fold to cleave different subtrates.

It is worth highlighting that most effectors described above are polymorphic toxins, harboring a translocation N-terminal domain in addition to their toxic C-terminal domains. These include RhsA and RhsB with a N-terminal RHS_repeat (PF05593) and C-terminal Endonuc_NS_2 (PF13930) and HNH domains (PF01844), respectively (Koskiniemi et al., 2013); VP1415 with N-terminal PAAR (PF05488) and C-terminal AHH (PF14412) domains (Salomon et al., 2014); Hcp-ET1 with N-terminal Hcp (PF05638) and C-terminal HNH domains (Ma et al., 2017); SARI_02603 with N-terminal VgrG (PF04717) and C-terminal HNH (PF01844) domains (Blondel et al., 2009; Ho et al., 2017).

PD-(D/E)xK superfamily

The PD(D/E)xK superfamily is the second most abundant among bacteriocins and effectors with nuclease activity. Like the His-Me finger, proteins belonging to PD(D/E)xK share small amino acid sequence similarity, but present conserved secondary structure signatures (Steczkiewicz et al., 2012). The conserved fold of this group comprise an α-helix followed by three antiparallel β-strands and a second α-helix followed by a final β-strand (αβββαβ) (Steczkiewicz et al., 2012). The catalytic residues are located in the second and third β-strand; the first α-helix has structural role and is related to the formation of the active site, while the second α-helix is involved in substrate binding (Wah et al., 1998). Conserved aspartic acid and glutamic acid (D/E) residues coordinate the metal ion (usually Mg2+), while the conserved lysine (K) associates with a water molecule to hydrolyze the phosphodiester bond (Kelly et al., 2007). This superfamily includes enzymes related to DNA metabolism (Steczkiewicz et al., 2012).

Effectors belonging to the PD(D/E)xK superfamily degrade both DNA and RNA (Table 1, Figure 2). These include T5SS effectors CdiA-CTII Bp1026b and CdiA-CTE479 from Burkholderia pseudomallei (Morse et al., 2012; Nikolakakis et al., 2012), and CdiA2-CT from A. baumannii (Roussin et al., 2019). Examples of T6SS effectors belonging to the PD(D/E)xK are TseT from P. aeruginosa (Burkinshaw et al., 2018; Wen et al., 2021), TseTBg from Burkholderia gladioli (Yadav et al., 2021), PoNe (polymorphic nuclease effector) from V. parahaemolyticus (Jana et al., 2019), IdrD from Proteus mirabilis (Sirias et al., 2020), RhsB from Acidovorax citrulli (Pei et al., 2022), and TseV from P. aeruginosa and Salmonella bongori (Wang et al., 2021; Hespanhol et al., 2022). In addition, SitA3 involved in interbacterial antagonism via outer membrane exchange contains the conserved αβββαβ fold (Vassallo et al., 2017).

The first PD-(D/E)xK effector was described in P. aeruginosa (TseT) and contains a Tox-REase-5 domain (PF15648) (Zhang et al., 2012; Burkinshaw et al., 2018). Homologs of TseT have been characterized in B. gladioli (TseTBg1 and TseTBg2) (Yadav et al., 2021), and degrade both DNA and RNA (Yadav et al., 2021). Interestingly, the DNase activity of TseTBg was affected by methylation. A DNA methylase (DamBG) is encoded next to the effector, and plasmids isolated from DamBG-producing E. coli were not degraded by TseTBg1 or TseTBg2 (Yadav et al., 2021). In addition, point mutations in conserved aspartic acid (D) and lysine (K) of TseTBg1 and TseTBg2 abrogated DNase activity (Yadav et al., 2021). Another curiosity is that these effectors are encoded next to two cognate immunity proteins: one of them neutralizes the enzymatic activity in vitro while the second directly binds to the promoter region of the effector, acting as a transcriptional repressor (Yadav et al., 2021).

The VRR-Nuc (virus-type replication repair nuclease) domain is found in enzymes involved in interstrand DNA crosslink repair (Kratz et al., 2010; Liu et al., 2010; MacKay et al., 2010; Smogorzewska et al., 2010; Gwon et al., 2014; Wang et al., 2014; Zhao et al., 2014), but recent studies identified effectors containing this domain - named TseVs (type VI effector VRR-Nuc) (Wang et al., 2021; Hespanhol et al., 2022). TseV2 and TseV3 from S. bongori were shown to participate in interbacterial competition in a T6SS-dependent manner (Hespanhol et al., 2022). TseV3 is a structure-specific nuclease that cleaves DNA substrates with a Y shape (named splayed arm), which resemble replication forks or transcription bubbles (Hespanhol et al., 2022). TseV2 and TseV3 induce DNA double-strand breaks and activate the SOS response in vivo (Hespanhol et al., 2022).

Enzymatic assays also showed the ability of additional PD-(D/E)xK superfamily members to degrade DNA in vitro. These include PoNe (Jana et al., 2019), RhsB (Pei et al., 2022), and IdrD (Sirias et al., 2020). Moreover, the T5SS effectors CdiA2-CTAb30011 from A. baumannii (Roussin et al., 2019) and CdiA-CTE479 from B. pseudomallei (Nikolakakis et al., 2012) were experimentally shown to degrade nucleic acids, leading to cell growth arrest. The first induces target cell DNA damage, while the second is specific to tRNAArg (Nikolakakis et al., 2012; Roussin et al., 2019). In summary, similar to the His-Me finger representatives, PD(D/E)xK members can target both DNA and RNA molecules.

E3-rRNase family

Members of the E3 rRNase family (PF09000) are the most frequent found in bacteriocins and effectors that target ribosomal RNAs (Table 1, Figure 2). Colicin E3 from E. coli was the first to be characterized (Bowman et al., 1971; Senior and Holland, 1971; Lasater et al., 1989; Ogawa et al., 1999), hence the name of the group E3-rRNase. Several homologs were later identified, such as colicin E4 and E6 from E. coli (Horak, 1975; Males and Stocker, 1982; Šmarda et al., 1988; Sharma et al., 2002; Hirao et al., 2004), cloacin DF13 from Enterobacter cloacae (De Graaf et al., 1973), pyocin S6 from P. aeruginosa (Dingemans et al., 2016) and klebicin C from K. pneumoniae (Chavan et al., 2005). The E3-rRNase domain has a highly specific activity towards the phosphodiester bond between nucleotides adenine1493 and guanine1494 of the 16S rRNA (Lasater et al., 1989). The T5SS effectors CdiA-CTECL from E. cloacae and CdiA-CTEC16 from Erwinia chrysanthemi contain an E3-rRNase domain and display activity against the 16S rRNA at the same position (Beck et al., 2014). CdiA-CT49162 and CdiA-CT0038 from Enterobacter hormaechei and Pseudomonas viridiflava are homologs that contain the E3-rRNase domain; however, their enzymatic activity was not experimentally validated (Beck et al., 2014).

Colicin D/E5 superfamily

The first member of the Colicin D/E5 clan (CL0640) was isolated from E. coli and named colicin D (Timmis and Hedges, 1972). Later, a second member of this clan was identified in Shigella sonnei and called colicin E5 (Males and Stocker, 1982). This protein is homologous to colicin E3 in the receptor-binding and translocation domains but shows a distinct toxic domain (Yajima et al., 2006). Both colicin E5 and colicin D were shown to be ribonucleases that target tRNAs and cleave anticodon loops between the 34 and 35 nucleotides of queuine-containing tRNAs, and between the 38 and 39 nucleotides of tRNAsArg, respectively (Ogawa et al., 1999; Tomita et al., 2000; Masaki and Ogawa, 2002). The catalytic domain found in these colicins were grouped with other metal-independent RNases as part of the BECR-fold (Barnase-EndoU-ColicinD/E5-RelE), which contain a similar structure composed of a α-helix and an anti-parallel β-sheet formed by four strands (Zhang et al., 2012). In colicin D, a large positively charged surface promotes tRNA binding and brings the anticodon loop close to a histidine residue located at the α-helix (His611), which carries the catalytic function by acting as a general base (Yajima et al., 2004). Colicin E5 possesses a positively charged cleft that promotes RNA docking (Lin et al., 2005) and targets tRNAHis, tRNATyr, tRNAAsn and tRNAAsp between their modified queuine nucleotide Q34 and U35 (Ogawa et al., 1999). The catalytic residues that participate in E5 enzymatic activity do not include a catalytic histidine that usually participate in RNA cleavage (Lin et al., 2005; Yajima et al., 2006), but instead residues R33 and K25 act as acid-base pairs (Inoue-Ito et al., 2012).

Besides colicin D and E5, other bacterial effectors have been described to belong to this clan (Table 1, Figure 2). Pyocin S4 from P. aeruginosa (Parret and De Mot, 2000) and klebicin D from K. pneumoniae (Chavan et al., 2005) have C-terminal domains that belong to the colicin D/E5 superfamily, and carocin S2 from P. carotovorum has ribonuclease activity in vitro (Chan et al., 2011). The CDI system has a variety of effectors that belong to this clan. The CdiA-CTEC869 and CdiA-CTEC3006 from E. coli are tRNases that have a different cleavage site located at the tRNA acceptor stem (Willett et al., 2015; Jones et al., 2017; Gucinski et al., 2019), the same is observed for CdiA-CTKp342 from K. pneumoniae (Gucinski et al., 2019). CdiA-CTK96243 and CdiA-CTE478 from B. pseudomallei present the same activity as colicin E5 (Aoki et al., 2010; Nikolakakis et al., 2012). In summary, members of the colicin D/E5 superfamily target tRNA by cleaving at distinct sites.

EndoU superfamily

EndoU RNases comprise nucleases from eukaryotic and viral RNA-processing enzymes (Zhang et al., 2011) and polymorphic bacterial toxins (Zhang et al., 2012). As the letter “E” in the BECR fold, EndoU toxins are metal-independent ribonucleases that contain the typical four stranded β-sheet next to a α-helix structure (Zhang et al., 2012), and are predicted to have ribonuclease activity carried out by two histidine residues (Zhang et al., 2011; Michalska et al., 2018). This superfamily has been described to be related to Ribonuclease A (Mushegian et al., 2020).

Four EndoU antibacterial toxins were verified experimentally, and the results showed that this fold presents some diversity in its mode of action. The T7SS effector BC_0920 from Bacillus cereus has RNase activity (Holberger et al., 2012). MafBMGI-1NEM8013, an outer membrane exported toxin from Neisseria meningitidis, is a nonspecific ribonuclease with a preference for urydilates (Jamet et al., 2015). CdiA-CTSTECO31, a T5SS secreted toxin from E. Coli (Michalska et al., 2018), presents a specific cleavage site at the anticodon loop of tRNAGlu; while CdiA-CTGN05224 from Klebsiella aerogenes shows tRNase activity in vivo (Michalska et al., 2018).

Even though bioinformatic analysis can broadly predict protein function, the precise mode of action of each nuclease within a superfamily requires empirical biochemical assays to accurately determine activity.

Other nuclease domains

Besides the nuclease groups mentioned above, other domains can be found in bacteriocins and effectors. Tde1 and Tde2 (type VI DNase effectors) from Agrobacterium tumefaciens have a Ntox15 domain (Zhang et al., 2012; Bondage et al., 2016), which is a polymorphic toxic domain characterized by an all α-helical fold and conserved HxxD catalytic residues (Zhang et al., 2012). Both effectors display DNase activity (Bondage et al., 2016). Several WapA proteins from B. subtilis display tRNAse activity, such as WapA-CT168, WapA-CTnatto and WapA-CTT-UB-10; however, the toxic domains remain undetermined (Koskiniemi et al., 2013). In addition, Wap-CTPY79 was hypothesized to display tRNAse activity based on sequence similarity (Stempler et al., 2017).

A recently discovered effector with no detectable domain and DNase activity is Tce1 (T6SS contact-independent antibacterial effector 1) from Yersinia pseudotuberculosis (Song et al., 2021). Tce1 is a Ca2+- and Mg2+-dependent enzyme that displays an interesting mechanism of target-cell delivery, which can be either dependent or independent of contact (via the outer membrane receptors BtuB and OmpF) (Song et al., 2021).

Also recently, new polymorfic toxin C-teminal domains (PTs) were described (Nachmias et al., 2022). The toxic domains of PT1 and PT7 were shown to be non-specific DNases that did not show sequence or structural similarity to any known nuclease (Nachmias et al., 2022). PT1 is likely secreted by the T6SS, while PT7 is probably secreted via the T7SS (Nachmias et al., 2022).

Other toxins with undetectable domains but with experimentally characterized nuclease activities comprise carocin S1 and S3 from P. carotovorum (Chuang et al., 2007; Wang et al., 2020), pyocin S3 from P. aeruginosa (Duport et al., 1995), and the T6SS effector Hcp-ET3 from E. coli (Ma et al., 2017). The characterization of these and other new toxic domains is an interesting source of information to the discovery of novel enzymatic activities.

Deaminases

Deaminases are enzymes that induce the deamination of nucleotides and are related to salvage pathways of purines and pyrimidines (Nygaard, 1993). Several deaminase domains have been predicted in polymorphic toxins (Iyer et al., 2011; Zhang et al., 2012). The first characterized T6SS deaminase effector was DddA (dsDNA deaminase toxin A) from Burkholderia cenocepacia (Mok et al., 2020). DddA promotes deamination of cytosine and its conversion to uracil in dsDNA, leading to a DNA mismatch during replication that needs to be repaired by the base excision repair (BER) pathway (Uphoff and Sherratt, 2017; de Moraes et al., 2021). An example of deaminases targeting ssDNA is the T6SS effector SsdA (ssDNA deaminase toxin A) from Pseudomonas syringae, which deaminases cytosine into uracil (de Moraes et al., 2021). Sublethal doses of DddA are related to an increase in the frequency of mutations, with a preference for C/G to A/T substitutions (Mok et al., 2020; de Moraes et al., 2021). The action of these mutagenic effectors can promote antibiotic resistance in natural settings (de Moraes et al., 2021).

ADP-ribosyltransferases

ADP-ribosyltranferases (ARTs) are enzymes able of transferring an ADP-ribose from the cofactor β-nicotinamide adenine dinucleotide (NAD+) into certain targets, which could be either amino acids or nucleotides (Mikolčević et al., 2021). In bacteria, many ARTs are virulence factors involved in pathogenesis that modify specific host cell proteins to manipulate cellular functions (Yoshida and Tsuge, 2021). These ARTs can be classified into two families: diphtheria toxin (DTX) with the conserved residues H-Y-E, and cholera toxin (CTX) with the conserved residues R-S-E (Mikolčević et al., 2021).

Among the weapons used in interbacterial antagonism, Tre23 (type VI secretion ADP-ribosyltranferase effector 23) from Photorhabdus laumondii is an ART from the H-Y-E clade that transfers ADP-ribose to 23S rRNA (Jurėnas et al., 2021). This modification occurs at the 23S rRNA GTPase-associated site of the ribosome, which is necessary for elongation during translation, thus stopping protein synthesis (Jurėnas et al., 2021) (Figure 2). Another RNA modifying toxin is RhsP2 from P. aeruginosa (Bullen et al., 2022). Interestingly, this enzyme displays the conserved residues Y-E and E from the two DTX and CTX ART families (Bullen et al., 2022). RhsP2 ADP-ribosylates a series of non-coding RNAs in target cells, including 4.5S rRNA, 6S rRNA, tRNAs, hindering multiple essential pathways (Bullen et al., 2022). Thus, ART toxins provide another layer of antagonistic strategies that bacteria use to interfere with molecules of the central dogma.

Antibacterial Small Molecules Targeting Nucleic Acids

Bacteria produce several classes of antibiotics that target nucleic acids, such as aminoglycosides, tetracyclines and macrolides (Table 1, Figure 2). The structural diversity of these molecules provides distinct opportunities for inhibition of the information flow thought the central dogma. Some antibiotics can induce DNA cleavage, inhibit DNA gyrases/topoisomerases or RNA polymerases, or bind to ribosomal RNAs to interfere with protein synthesis.

Among the antibiotics that induce DNA cleavage there are bleomycins, calicheamicin and daunorubicin. The bleomycin group comprises bleomycins, phleomycins, tallysomycin and zorbamycins (Hecht, 2000). Bleomycins are glycopeptides first isolated from Streptomyces verticillus (Umezawa et al., 1966) that promote oxidative cleavage of double-strand DNA in a sequence-specific manner (Takeshita et al., 1978; Kross et al., 1982). These antibiotics rely on the presence of molecular oxygen and a redox active metal like Fe2+ or Cu+ (Burger et al., 1981; Hecht, 2000). Bleomycins are composed of four functional domains: metal-binding, DNA-binding, linker region connecting the two previous domains, and a disaccharide moiety that promotes cell selectivity (Boger and Cai, 1999). The metal-binding domain is responsible for the specificity of DNA sequence (Sugiyama et al., 1986), which consists mainly of GT dinucleotides but can also be GC and AT (Kross et al., 1982). Phleomycins, tallysomycins and zorbamycins have slightly different sequence specificity but cleave DNA in a similar mechanism (Kross et al., 1982). Calicheamicin belongs to the enediynes group of antibiotics and was first isolated from Micromonospora echinospora ssp. calichensis (Zein et al., 1988). It promotes double-strand DNA cleavage in a sequence-specific manner, preferentially at AGGA, TCCT and ACCT (Zein et al., 1988). The mechanism of cleavage requires the removal of hydrogen atoms (abstraction) from the DNA backbone (Lee et al., 1991). Daunomycin from Streptomyces peucetius can intercalate and form complexes with DNA, leading to chromosome fragmentation (Marco et al., 1975).

Some antibiotics promote DNA degradation by arresting topoisomerases. Type II topoisomerases function by promoting metal-dependent DNA double-strand breaks, followed by ATP-dependent translocation of DNA segments and rejoining the separated DNA ends (Gentry and Osheroff, 2013). The DNA gyrase and topoisomerase IV (topo IV) are type II topoisomerases found in bacteria and are composed of two domains: GyrA and GyrB, and ParC and ParE, respectively (Levine et al., 1998). The GyrA or ParC domains interact with DNA, while GyrB or ParE bind and hydrolyze the ATP necessary for enzymatic function (Levine et al., 1998). Some groups of antibiotics bind to the ATP-binding site of GyrB and ParE to inhibit the activity of the topoisomerase complex, thus generating DNA breaks and the collapse of the replication fork (Anderson et al., 2000; Maxwell and Lawson, 2003). These antibiotics comprise coumarins and cyclothialidines from Streptomyces spp. (Goetschi et al., 1993; Oblak et al., 2007), kibdelomycin from Kibdelosporangium sp. (Phillips et al., 2011), and amycolamicin from Amycolatopsis sp. (Sawa et al., 2012).

Transcription is another seductive target for antibacterial natural products. Rifamycin from Amycolatopsis rifamycinica (Sensi, 1959) is a macrolide antibiotic that blocks transcription by binding to the β subunit of the RNA polymerase, thus stopping DNA-dependent RNA synthesis via transcript elongation arrest (Campbell et al., 2001; Floss and Yu, 2005). Fidaxomicin isolated from Dactylosporangium aurantiacum (Theriault et al., 1987) prevents RNA transcription by blocking DNA double-strand opening in promotor regions, thus inhibiting transcription initiation by the RNA polymerase (Artsimovitch et al., 2012).

The ribosome is the center of protein synthesis. It is a large ribonucleoprotein complex composed of two subunits (30S and 50S) forming the 70S bacterial ribosome. The 30S subunit contain the 16S rRNA, while the 50S subunit contain the 23S rRNA and 5S rRNA (Deutscher, 2009). These nanomachines are one of the favorite targets when it comes to bacterial growth inhibition by antibiotics. Most of these antibacterial molecules inhibit ribosome activity by binding directly to the rRNAs and arresting translation by acting as allosteric inhibitors. Here we focused only on antibiotics produced by bacteria that interfere with protein synthesis by binding to rRNAs.

The 30S ribosomal subunit is the target of aminoglycosides, tetracyclines, pactamycin and edeine, which bind at different sites of the 16S rRNA. Aminoglycosides gentamicin from Micromonospora spp. (Weinstein et al., 1963), hygromycin B from Streptomyces hygroscopicus (Mann and Bromer, 1958), neomycin from Streptomyces fradiae (Waksman and Lechevalier, 1949), paromomycin from Streptomyces krestomuceticus, kanamycin from Streptomyces kanamyceticus (Umezawa et al., 1957) and streptomycin from Streptomyces griseus (Schatz et al., 1944) can target the helix 44 of 16S rRNA (Wilson, 2009). Meanwhile, aminoglycoside spectinomycin from Streptomyces spectabilis (Mason et al., 1961) targets the helix 34 of 16S rRNA (Wilson, 2009). Lastly, aminoglycoside kasugamycin from Streptomyces kasugaensis (Umezawa et al., 1965) binds to 16S rRNA at the messenger RNA channel (Schuwirth et al., 2006). Tetracycline from Streptomyces aureofaciens (Putnam et al., 1953) binds to helixes 31 and 34 (Brodersen et al., 2000; Pioletti et al., 2001). Pactamycins from Streptomyces pactum (Bhuyan, 1962) binds at the central domain of 16S rRNA (Brodersen et al., 2000), while edeine from Brevibacillus brevis (Kurylo-borowska, 1959) binds to helixes 44 and 45 (Pioletti et al., 2001).

The 50S subunit is also widely affected by antibiotics. Erythromycin, lincomyicin, blasticidin, viomycin and capreomycin target the 23S rRNA. Antibiotics from the macrolide class are produced by diverse Actinomycetes (Dinos, 2017) and can bind to the 23S rRNA at the nascent peptide exit tunnel (Schlünzen et al., 2001; Vázquez-Laslop and Mankin, 2018). Lincomycin from Streptomyces lincolnensis (Mason et al., 1962) binds to the peptidyl transferase cavity at the ribosomal A site (Douthwaite, 1992). Blasticidin S from Streptomyces griseo chromogenes (Takeuchi et al., 1958) and sparsomycin from Streptomyces sparsogenes (Owen et al., 1962) bind to the 23S rRNA at the ribosomal P site (Johnston et al., 2002; Hansen et al., 2003). Tuberactinomycins, such as capreomycin from Streptomyces capreolus (Herr Jr and Redstone, 1966) and viomycin from Streptomyces puniceus (Finlay et al., 1951), can interact with both 30S and 50S ribosomal subunits by binding to 16S rRNA at helix 44 and to 23S rRNA at helix 69 (Johansen et al., 2006). In summary, antibiotics collectively work in several steps to prevent the information flow through the central dogma.

Contribution to the Development of Antibiotic Resistance

During the evolutionary arms race in which bacteria developed several weapons to inactivate or kill competitors, immunity mechanisms to prevent self-intoxication and protect sister-cells evolved concomitantly. For proteinaceous antibacterial molecules like effectors and bacteriocins, the expression of a specific immunity protein is usually the most common mechanism of defense (Zhang et al., 2012; Ruhe et al., 2020). For small molecules like antibiotics, there are several mechanisms that could render a cell resistant: (1) target modification by specific enzymes; (2) target bypass via mutations in the targets that lead to reduced affinity; (3) degrading or modifying proteins that act on the molecules; (4) reduced intake via altered membrane permeability; (5) efflux pumps that export the molecules (Darby et al., 2022).

During interbacterial competitions, effectors and bacteriocins that target the DNA contribute to the emergence of antibiotic resistance by increasing the rate of mutagenesis in cells that receive a sublethal dose. The deaminase T6SS effector DddA has been shown to increase the rate of C/G to T/A mutation, leading to emergence of rifamycin resistance by introducing point mutations in the rpoB gene, which encodes the β-subunit of RNA polymerase (de Moraes et al., 2021). In addition, cleavage of the 16S rRNA by colicin E3 promotes faster tRNA-mRNA translocation in ribosomes, thus making it less sensitive to inhibition by the antibiotic viomycin (Lancaster et al., 2008).

In general, DNA damage induced by bacteriocins or effectors activate the SOS response, which can induce the activation of the translesion DNA repair pathway and promote mutations (Patel et al., 2010). The mutagenesis can also be responsible for altering gene expression or characteristics of membrane channels important for antibiotic internalization (Livermore, 1990). Mutations in the promoter region of OmpF (outer membrane protein F) leads to its downregulation, thus conferring β-lactam resistance in E. coli (Delcour, 2009). Similarly, point mutations in OmpF in Enterobacter aerogenes reduce outer membrane permeability and promote resistance to β-lactam antibiotics, which act by inhibiting peptidoglycan synthesis (et al., 2001).

In addition to contributing to an increase in the mutation rate of target cells, antibacterial molecules (e.g., lipases and peptidoglycan hydrolases) can promote the lysis of target cells and the release of extracellular DNA, which could be uptaken by the attacker bacterium and incorporated into its genome, thus stimulating horizontal gene transfer and the spread of genes encoding antibiotic resistance. Examples of this include the T6SSs of Vibrio cholerae and Acinetobacter baylyi (Borgeaud et al., 2015; Cooper et al., 2017; Ringel et al., 2017). Curiously, V. cholerae have its T6SS gene cluster under the control of competence regulators (Borgeaud et al., 2015), demonstrating the relationship between the bacterial competition and horizontal gene transfer events.

Perspectives

Nucleases are possibly the most ancient biological weapons and likely used in periods prior to the development of individual cells surrounded by membranes. Their activities are among the chemical armaments used in biological conflicts across all organizational levels. For example, endonuclease domains of the His-Me superfamily are found in nucleic acid-degrading snake toxins, bacterial polymorphic toxins, bacterial restriction-modification systems conferring antiviral immunity, and eukaryotic apoptosis systems (Zhang et al., 2012; Trummal et al., 2014; Jablonska et al., 2017). There is still a wide array of predicted nucleic acids-targeting enzymes that require further empiral characterization. While it is possible to extropolate the possible activities of predicted groups based on similarities to known enzymes, such as Ntox18, Ntox19, Ntox22 and Ntox30 that are expected to be metal-independent RNases (Zhang et al., 2012), there are Ntox groups for which the nature of catalysis could not be predicted (Zhang et al., 2012).

The large number of antibacterial molecules targeting the central dogma and the number of resistance mechanisms promoting immunity to these molecules, call our attention to the fact that antibiotic resistance is an ancient and naturally occurring phenomenon widespread in the environment. It is important to note that these molecules attacking the central dogma act as part of a miscellaneous arsenal of toxins that damage other cellular components and their combined effect dictates the aftermath of antagonistic interactions. Experimental data confirmed that antibiotic resistance can arise solely by competitive interactions between bacteria without previous antibiotic exposure (Koch et al., 2014). Bacteria joined an arms race millions of years prior to the discovery of antibiotics and studying the mechanisms and outcomes of antagonistic interaction might help us anticipate the emergence of antibiotic resistance in different settings.

Acknowledgements

This work was supported by Sao Paulo Research Foundation grant 2017/02178-2 to E.B.-S, and FAPESP fellowships to J.T.H (2022/01364-5), L.K. (2022/01444-9), D.E.S.-L. (2019/22715-8) and E.B.-S. (2018/04553-8). J.T.H. and D.E.S.-L. were supported by the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

References

  1. Abdel-Monem M, Dürwald H, Hoofman-Berling H. Enzymic unwinding of DNA: 2. Chain Separation by an ATP‐Dependent DNA unwinding enzyme. Eur J Biochem. 1976;65:441–449. doi: 10.1111/j.1432-1033.1976.tb10359.x. [DOI] [PubMed] [Google Scholar]
  2. Alcoforado-Diniz J, Coulthurst SJ. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol. 2015;197:2350–2360. doi: 10.1128/JB.00199-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson VE, Zaniewski RP, Kaczmarek FS, Gootz TD, Osheroff N. Action of quinolones against Staphylococcus aureus topoisomerase IV: basis for DNA cleavage enhancement. Biochemistry. 2000;39:2726–2732. doi: 10.1021/bi992302n. [DOI] [PubMed] [Google Scholar]
  4. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. Contact-dependent inhibition of growth in Escherichia coli. Science. 2005;309:1245–1248. doi: 10.1126/science.1115109. [DOI] [PubMed] [Google Scholar]
  5. Aoki SK, Diner EJ, CtK de Roodenbeke, Burgess BR, Poole SJ, Braaten BA, Jones AM, Webb JS, Hayes CS, Cotter PA. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 2010;468:439–442. doi: 10.1038/nature09490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55:S127–S131. doi: 10.1093/cid/cis358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Basler M. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150021. doi: 10.1098/rstb.2015.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathogens. 2019;15:e1007651. doi: 10.1371/journal.ppat.1007651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beck CM, Morse RP, Cunningham DA, Iniguez A, Low DA, Goulding CW, Hayes CS. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure. 2014;22:707–718. doi: 10.1016/j.str.2014.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005;58:1–26. doi: 10.1038/ja.2005.1. [DOI] [PubMed] [Google Scholar]
  11. Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 2017;11:972–987. doi: 10.1038/ismej.2016.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bhuyan B. Pactamycin production by Streptomyces pactum. Appl Microbiol. 1962;10:302–304. doi: 10.1128/am.10.4.302-304.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics. 2009;10:354. doi: 10.1186/1471-2164-10-354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Boger DL, Cai H. Bleomycin: Synthetic and mechanistic studies. Angew Chem Int Ed. 1999;38:448–476. doi: 10.1002/(SICI)1521-3773(19990215)38:4<448::AID-ANIE448>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  15. Bondage DD, Lin J-S, Ma L-S, Kuo C-H, Lai E-M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 2016;113:E3931–E3940. doi: 10.1073/pnas.1600428113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347:63–67. doi: 10.1126/science.1260064. [DOI] [PubMed] [Google Scholar]
  17. Bowman C, Dahlberg J, Ikemura T, Konisky J, Nomura M. Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc Natl Acad Sci U S A. 1971;68:964–968. doi: 10.1073/pnas.68.5.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brodersen DE, Clemons WM, Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103:1143–1154. doi: 10.1016/s0092-8674(00)00216-6. [DOI] [PubMed] [Google Scholar]
  19. Bullen NP, Sychantha D, Thang SS, Culviner PH, Rudzite M, Ahmad S, Shah VS, Filloux A, Prehna G, Whitney JC. An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol Cell. 2022;82:3484–3498.:e3411. doi: 10.1016/j.molcel.2022.08.015. [DOI] [PubMed] [Google Scholar]
  20. Burger RM, Peisach J, Horwitz SB. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J Biol Chem. 1981;256:11636–11644. [PubMed] [Google Scholar]
  21. Burkinshaw BJ, Liang X, Wong M, Le AN, Lam L, Dong TG. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 2018;3:632–640. doi: 10.1038/s41564-018-0144-4. [DOI] [PubMed] [Google Scholar]
  22. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–912. doi: 10.1016/s0092-8674(01)00286-0. [DOI] [PubMed] [Google Scholar]
  23. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol. 2016;2:16183. doi: 10.1038/nmicrobiol.2016.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiology and molecular biology reviews. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chak KF, Kuo W-S, James R. Cloning and characterization of the ColE7 plasmid. Microbiology. 1991;137:91–100. doi: 10.1099/00221287-137-1-91. [DOI] [PubMed] [Google Scholar]
  26. Chak KF, Safo MK, Ku W-Y, Hsieh S-Y, Yuan HS. The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc Natl Acad Sci U S A. 1996;93:6437–6442. doi: 10.1073/pnas.93.13.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chan Y-C, Wu J-L, Wu H-P, Tzeng K-C, Chuang D-Y. Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiol. 2011;11:99. doi: 10.1186/1471-2180-11-99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Mol Evol. 2005;60:546–556. doi: 10.1007/s00239-004-0263-9. [DOI] [PubMed] [Google Scholar]
  29. Chuang D-y, Chien Y-c, Wu H-P. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J Bacteriol. 2007;189:620–626. doi: 10.1128/JB.01090-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cooper PC, James R. Two new E colicins, E8 and E9, produced by a strain of Escherichia coli. Microbiology. 1984;130:209–215. doi: 10.1099/00221287-130-1-209. [DOI] [PubMed] [Google Scholar]
  31. Cooper PC, James R. Three immunity types of klebicins which use the cloacin DF13 receptor of Klebsiella pneumoniae. Microbiology. 1985;131:2313–2318. doi: 10.1099/00221287-131-9-2313. [DOI] [PubMed] [Google Scholar]
  32. Cooper RM, Tsimring L, Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. Elife. 2017;6:e25950. doi: 10.7554/eLife.25950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Crick F. Central dogma of molecular biology. Nature. 1970;227:561–563. doi: 10.1038/227561a0. [DOI] [PubMed] [Google Scholar]
  34. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair J. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2022 doi: 10.1038/s41579-022-00820-y. [DOI] [PubMed] [Google Scholar]
  35. Dé E, Baslé A, Jaquinod M, Saint N, Malléa M, Molle G, Pagès JM. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol. 2001;41:189–198. doi: 10.1046/j.1365-2958.2001.02501.x. [DOI] [PubMed] [Google Scholar]
  36. De Graaf F, Niekus H, Klootwijk J. Inactivation of bacterial ribosome in vivo and in vitro by cloacin DF13. FEBS Lett. 1973;35:161–165. doi: 10.1016/0014-5793(73)80601-5. [DOI] [PubMed] [Google Scholar]
  37. de Moraes MH, Hsu F, Huang D, Bosch DE, Zeng J, Radey MC, Simon N, Ledvina HE, Frick JP, Wiggins PA. An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. Elife. 2021;10:e62967. doi: 10.7554/eLife.62967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta Proteins Proteom. 2009;1794:808–816. doi: 10.1016/j.bbapap.2008.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Deutscher MP. Maturation and degradation of ribosomal RNA in bacteria. Mol Biol Transl Sci. 2009;85:369–391. doi: 10.1016/S0079-6603(08)00809-X. [DOI] [PubMed] [Google Scholar]
  40. Dingemans J, Ghequire MG, Craggs M, De Mot R, Cornelis P. Identification and functional analysis of a bacteriocin, pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. Microbiologyopen. 2016;5:413–423. doi: 10.1002/mbo3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol. 2017;174:2967–2983. doi: 10.1111/bph.13936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Douthwaite S. Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol. 1992;174:1333–1338. doi: 10.1128/jb.174.4.1333-1338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Duport C, Baysse C, Michel-Briand Y. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J Biol Chem. 1995;270:8920–8927. doi: 10.1074/jbc.270.15.8920. [DOI] [PubMed] [Google Scholar]
  44. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007;24:708–734. doi: 10.1039/b516237h. [DOI] [PubMed] [Google Scholar]
  45. Ebright RH. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol. 2000;304:687–698. doi: 10.1006/jmbi.2000.4309. [DOI] [PubMed] [Google Scholar]
  46. Etebu E, Arikekpar I. Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016;4:90–101. [Google Scholar]
  47. Finlay A, Hobby G, Hochstein F, Lees T, Lenert T, Means J, P’an S, Regna P, Routien J, Sobin B. Viomycin, a new antibiotic active against mycobacteria. Am Rev Tuberc. 1951;63:1–3. doi: 10.1164/art.1951.63.1.1. [DOI] [PubMed] [Google Scholar]
  48. Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M, Boyce JD. Identification of novel Acinetobacter baumannii type VI secretion system antibacterial effector and immunity pairs. Infect Immun. 2018;86:e00297-18. doi: 10.1128/IAI.00297-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Flick KE, Jurica MS, Monnat RJ, Stoddard BL. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 1998;394:96–101. doi: 10.1038/27952. [DOI] [PubMed] [Google Scholar]
  50. Floss HG, Yu T-W. Rifamycin mode of action, resistance, and biosynthesis. Chem Rev. 2005;105:621–632. doi: 10.1021/cr030112j. [DOI] [PubMed] [Google Scholar]
  51. Fridman CM, Jana B, Ben-Yaakov R, Bosis E, Salomon D. A DNase type VI secretion system effector requires its MIX domain for secretion. Microbiol Spectr. 2022:e02465-02422. doi: 10.1128/spectrum.02465-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. García-Bayona L, Guo MS, Laub MT. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. Elife. 2017;6:e24869. doi: 10.7554/eLife.24869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Garinot-Schneider C, Pommer AJ, Moore GR, Kleanthous C, James R. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. J Mol Biol. 1996;260:731–742. doi: 10.1006/jmbi.1996.0433. [DOI] [PubMed] [Google Scholar]
  54. Gentry A, Osheroff N. DNA topoisomerases: type II. In: Lennarz WJ and Lane MD (eds) Encyclopedia of Biological Chemistry. 2. Academic Press; London: 2013. pp. 163–168. [Google Scholar]
  55. Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 2014;38:523–568. doi: 10.1111/1574-6976.12079. [DOI] [PubMed] [Google Scholar]
  56. Goetschi E, Angehrn P, Gmuender H, Hebeisen P, Link H, Masciadri R, Nielsen J. Cyclothialidine and its congeners: a new class of DNA gyrase inhibitors. Pharmacol Ther. 1993;60:367–380. doi: 10.1016/0163-7258(93)90017-8. [DOI] [PubMed] [Google Scholar]
  57. Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:R521–R537. doi: 10.1016/j.cub.2019.04.024. [DOI] [PubMed] [Google Scholar]
  58. Gucinski GC, Michalska K, Garza-Sánchez F, Eschenfeldt WH, Stols L, Nguyen JY, Goulding CW, Joachimiak A, Hayes CS. Convergent evolution of the Barnase/EndoU/Colicin/RelE (BECR) fold in antibacterial tRNase toxins. Structure. 2019;27:1660–1674.:e1665. doi: 10.1016/j.str.2019.08.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Gwon GH, Kim Y, Liu Y, Watson AT, Jo A, Etheridge TJ, Yuan F, Zhang Y, Kim Y, Carr AM. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5′ flap DNA: basis of interstrand cross-link repair by FAN1. Genes Dev. 2014;28:2276–2290. doi: 10.1101/gad.248492.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hachani A, Allsopp LP, Oduko Y, Filloux A. The VgrG proteins are “a la carte” delivery systems for bacterial type VI effectors. J Biol Chem. 2014;289:17872–17884. doi: 10.1074/jbc.M114.563429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hanawalt PC. Density matters: the semiconservative replication of DNA. Proc Natl Acad Sci U S A. 2004;101:17889–17894. doi: 10.1073/pnas.0407539101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hansen JL, Moore PB, Steitz TA. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol. 2003;330:1061–1075. doi: 10.1016/s0022-2836(03)00668-5. [DOI] [PubMed] [Google Scholar]
  63. Hecht SM. Bleomycin: new perspectives on the mechanism of action. J Nat Prod. 2000;63:158–168. doi: 10.1021/np990549f. [DOI] [PubMed] [Google Scholar]
  64. Herr EB, Jr, Redstone MO. Chemical and physical characterization of capreomycin. Ann N Y Acad Sci. 1966;135:940–946. doi: 10.1111/j.1749-6632.1966.tb45535.x. [DOI] [PubMed] [Google Scholar]
  65. Hespanhol JT, Sanchez-Limache DE, Nicastro GG, Mead L, Llontop EE, Chagas-Santos G, Farah CS, de Souza RF, da Silva Galhardo R, Lovering A, et al. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases. Elife. 2022;11:e82437. doi: 10.7554/eLife.82437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hirao I, Harada Y, Nojima T, Osawa Y, Masaki H, Yokoyama S. In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA. Biochemistry. 2004;43:3214–3221. doi: 10.1021/bi0356146. [DOI] [PubMed] [Google Scholar]
  67. Ho BT, Fu Y, Dong TG, Mekalanos JJ. Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A. 2017;114:9427–9432. doi: 10.1073/pnas.1711219114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA, Hayes CS. A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett. 2012;586:132–136. doi: 10.1016/j.febslet.2011.12.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37. doi: 10.1016/j.chom.2009.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Horak V. Typing of Shigella sonnei colicins by means of specific indicators. Zentralbl Bakteriol Orig A. 1975;233:58–63. [PubMed] [Google Scholar]
  71. Hsia K-C, Chak K-F, Liang P-H, Cheng Y-S, Ku W-Y, Yuan HS. DNA binding and degradation by the HNH protein ColE7. Structure. 2004;12:205–214. doi: 10.1016/j.str.2004.01.004. [DOI] [PubMed] [Google Scholar]
  72. Inoue-Ito S, Yajima S, Fushinobu S, Nakamura S, Ogawa T, Hidaka M, Masaki H. Identification of the catalytic residues of sequence-specific and histidine-free ribonuclease colicin E5. J Biochem. 2012;152:365–372. doi: 10.1093/jb/mvs077. [DOI] [PubMed] [Google Scholar]
  73. Iyer LM, Zhang D, Rogozin IB, Aravind L. Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res. 2011;39:9473–9497. doi: 10.1093/nar/gkr691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res. 2017;45:11479–11494. doi: 10.1093/nar/gkx924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. James R, Schneider J, Cooper PC. Characterization of three group A klebicin plasmids: localization of their E colicin immunity genes. Microbiology. 1987;133:2253–2262. doi: 10.1099/00221287-133-8-2253. [DOI] [PubMed] [Google Scholar]
  76. Jamet A, Jousset AB, Euphrasie D, Mukorako P, Boucharlat A, Ducousso A, Charbit A, Nassif X. A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathogens. 2015;11:e1004592. doi: 10.1371/journal.ppat.1004592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Jana B, Fridman CM, Bosis E, Salomon D. A modular effector with a DNase domain and a marker for T6SS substrates. Nat Commun. 2019;10:3595. doi: 10.1038/s41467-019-11546-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell. 2006;23:173–182. doi: 10.1016/j.molcel.2006.05.044. [DOI] [PubMed] [Google Scholar]
  79. Johnston NJ, Mukhtar TA, Wright GD. Streptogramin antibiotics: mode of action and resistance. Curr Drug Targets. 2002;3:335–344. doi: 10.2174/1389450023347678. [DOI] [PubMed] [Google Scholar]
  80. Jones AM, Garza-Sánchez F, So J, Hayes CS, Low DA. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc Natl Acad Sci U S A. 2017;114:E1951–E1957. doi: 10.1073/pnas.1619273114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Jurėnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA. Nucleic Acids Res. 2021;49:8384–8395. doi: 10.1093/nar/gkab608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Kaundal S, Deep A, Kaur G, Thakur KG. Molecular and biochemical characterization of YeeF/YezG, a polymorphic toxin-immunity protein pair from Bacillus subtilis. Front Microbiol. 2020;11:95. doi: 10.3389/fmicb.2020.00095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Kelly SJ, Li J, Setlow P, Jedrzejas MJ. Structure, flexibility, and mechanism of the Bacillus stearothermophilus RecU Holliday junction resolvase. Proteins. 2007;68:961–971. doi: 10.1002/prot.21418. [DOI] [PubMed] [Google Scholar]
  84. Klein TA, Ahmad S, Whitney JC. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol. 2020;28:387–400. doi: 10.1016/j.tim.2020.01.003. [DOI] [PubMed] [Google Scholar]
  85. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohlsen K, Foster KR, Lopez D. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell. 2014;158:1060–1071. doi: 10.1016/j.cell.2014.06.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Koskiniemi S, Lamoureux JG, Nikolakakis KC, CtK de Roodenbeke, Kaplan MD, Low DA, Hayes CS. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A. 2013;110:7032–7037. doi: 10.1073/pnas.1300627110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Kratz K, Schöpf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavó E, Sartori AA, Hengartner MO, Jiricny J. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell. 2010;142:77–88. doi: 10.1016/j.cell.2010.06.022. [DOI] [PubMed] [Google Scholar]
  88. Kross J, Henner WD, Hecht SM, Haseltine WA. Specificity of deoxyribonucleic acid cleavage by bleomycin, phleomycin, and tallysomycin. Biochemistry. 1982;21:4310–4318. doi: 10.1021/bi00261a021. [DOI] [PubMed] [Google Scholar]
  89. Kurazono H, Yamamoto S, Nakano M, Nair G, Terai A, Chaicumpa W, Hayashi H. Characterization of a putative virulence island in the chromosome of uropathogenic Escherichia coli possessing a gene encoding a uropathogenic-specific protein. Microb Pathog. 2000;28:183–189. doi: 10.1006/mpat.1999.0331. [DOI] [PubMed] [Google Scholar]
  90. Kurylo-borowska Z. Isolation and properties of pure edeine, an antibiotic of the strain. Bacillus brevis Vm4 Bull Inst Marine Med Gdansk. 1959;10:151–163. [PubMed] [Google Scholar]
  91. Lancaster LE, Savelsbergh A, Kleanthous C, Wintermeyer W, Rodnina MV. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol Microbiol. 2008;69:390–401. doi: 10.1111/j.1365-2958.2008.06283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Lasater L, Cann P, Glitz DG. ocalization of the site of cleavage of ribosomal RNA by colicin E3: Placement on the small ribosomal subunit by electron microscopy of antibody-complementary oligodeoxynucleotide complexes. J Biol Chem. 1989;264:21798–21805. [PubMed] [Google Scholar]
  93. Lee MD, Ellestad GA, Borders DB. Calicheamicins: discovery, structure, chemistry, and interaction with DNA. Acc Chem Res. 1991;24:235–243. [Google Scholar]
  94. Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta. 1998;1400:29–43. doi: 10.1016/s0167-4781(98)00126-2. [DOI] [PubMed] [Google Scholar]
  95. Li Y, Yan X, Tao Z. Two type VI secretion DNase effectors are utilized for interbacterial competition in the fish pathogen Pseudomonas plecoglossicida. Front Microbiol. 2022;13:869278. doi: 10.3389/fmicb.2022.869278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Lin Y-L, Elias Y, Huang RH. Structural and mutational studies of the catalytic domain of colicin E5: a tRNA-specific ribonuclease. Biochemistry. 2005;44:10494–10500. doi: 10.1021/bi050749s. [DOI] [PubMed] [Google Scholar]
  97. Liu T, Ghosal G, Yuan J, Chen J, Huang J. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science. 2010;329:693–696. doi: 10.1126/science.1192656. [DOI] [PubMed] [Google Scholar]
  98. Livermore DM. Antibiotic uptake and transport by bacteria. Scand J Infect Dis Suppl. 1990;74:15–22. [PubMed] [Google Scholar]
  99. Ma J, Pan Z, Huang J, Sun M, Lu C, Yao H. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence. 2017;8:1189–1202. doi: 10.1080/21505594.2017.1279374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. MacKay C, Déclais A-C, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell. 2010;142:65–76. doi: 10.1016/j.cell.2010.06.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Males B, Stocker B. Colicins E4, E5, E6 and A and properties of btuB+ colicinogenic transconjugants. Microbiology. 1982;128:95–106. doi: 10.1099/00221287-128-1-95. [DOI] [PubMed] [Google Scholar]
  102. Males BM, Stocker B. Escherichia coli K317, formerly used to define colicin group E2, produces colicin E7, is immune to colicin E2, and carries a bacteriophage-restricting conjugative plasmid. J Bacteriol. 1980;144:524–531. doi: 10.1128/jb.144.2.524-531.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mann RL, Bromer W. The isolation of a second antibiotic from Streptomyces hygroscopicus. J Am Chem Soc. 1958;80:2714–2716. [Google Scholar]
  104. Marco AD, Arcamone F, Zunino F. In: Mechanism of action of antimicrobial and antitumor agents. Corcoran JW, Hahn FE, Snell JF, Arora KL, editors. Springer; Berlin: 1975. Daunomycin (daunorubicin) and adriamycin and structural analogues: biological activity and mechanism of action; pp. 101–128. [Google Scholar]
  105. Masaki H, Ogawa T. The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie. 2002;84:433–438. doi: 10.1016/s0300-9084(02)01425-6. [DOI] [PubMed] [Google Scholar]
  106. Mason D, Dietz A, Smith R. Actino-spectacin, a new antibiotic. I. Discovery and biological properties. Antibiot Chemother (Northfield) 1961;11:118–122. [PubMed] [Google Scholar]
  107. Mason D, Dietz A, DeBoer C. Lincomycin, a new antibiotic. I. Discovery and biological properties. Antimicrob Agents Ch. 1962;1962:554–559. [Google Scholar]
  108. Maté MJ, Kleanthous C. Structure-based analysis of the metal-dependent mechanism of HNH endonucleases. J Biol Chem. 2004;279:34763–34769. doi: 10.1074/jbc.M403719200. [DOI] [PubMed] [Google Scholar]
  109. Maxwell A, Lawson DM. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem. 2003;3:283–303. doi: 10.2174/1568026033452500. [DOI] [PubMed] [Google Scholar]
  110. Méndez C, Salas JA. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol. 2001;152:341–350. doi: 10.1016/s0923-2508(01)01205-0. [DOI] [PubMed] [Google Scholar]
  111. Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1958;44:671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Michalska K, Quan Nhan D, Willett JL, Stols LM, Eschenfeldt WH, Jones AM, Nguyen JY, Koskiniemi S, Low DA, Goulding CW. Functional plasticity of antibacterial EndoU toxins. Mol Microbiol. 2018;109:509–527. doi: 10.1111/mmi.14007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J. 2021;19:2366–2383. doi: 10.1016/j.csbj.2021.04.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Minchin S, Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays Biochem. 2019;63:433–456. doi: 10.1042/EBC20180038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Mindlin S, Petrova M. On the origin and distribution of antibiotic resistance: permafrost bacteria studies. Mol Gen Microbiol Virol. 2017;32:169–179. [Google Scholar]
  116. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637. doi: 10.1038/s41586-020-2477-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Monro RE. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J Mol Biol. 1967;26:147–151. doi: 10.1016/0022-2836(67)90271-9. [DOI] [PubMed] [Google Scholar]
  118. Morange M. The Central Dogma of molecular biology. Resonance. 2009;14:236–247. [Google Scholar]
  119. Morse RP, Nikolakakis KC, Willett JL, Gerrick E, Low DA, Hayes CS, Goulding CW. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci U S A. 2012;109:21480–21485. doi: 10.1073/pnas.1216238110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Mushegian A, Sorokina I, Eroshkin A, Dlakić M. An ancient evolutionary connection between Ribonuclease A and EndoU families. RNA. 2020;26:803–813. doi: 10.1261/rna.074385.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Nachmias N, Dotan N, Fraenkel R, Rocha MC, Kluzek M, Shalom M, Rivitz A, Shamash-Halevy N, Cahana I, Deouell N, et al. Systematic discovery of antibacterial and antifungal bacterial toxins. bioRxiv. 2022:2021.2010.2019.465003 [Google Scholar]
  122. Nikolakakis K, Amber S, Wilbur JS, Diner EJ, Aoki SK, Poole SJ, Tuanyok A, Keim PS, Peacock S, Hayes CS. The toxin/immunity network of Burkholderia pseudomallei contact‐dependent growth inhibition (CDI) systems. Mol Microbiol. 2012;84:516–529. doi: 10.1111/j.1365-2958.2012.08039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Nipič D, Podlesek Z, Budič M, Črnigoj M, Žgur-Bertok D. Escherichia coli uropathogenic-specific protein, Usp, is a bacteriocin-like genotoxin. J Infect Dis. 2013;208:1545–1552. doi: 10.1093/infdis/jit480. [DOI] [PubMed] [Google Scholar]
  124. Nygaard P. In: Bacillus subtilis and other gram‐positive bacteria: biochemistry, physiology, and molecular genetics. Sonenshein AL, Hoch JA, Losick R, editors. American Society for Microbiology; Washington: 1993. Purine and pyrimidine salvage pathways; pp. 359–378. [Google Scholar]
  125. Oakley AJ. A structural view of bacterial DNA replication. Protein Sci. 2019;28:990–1004. doi: 10.1002/pro.3615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Oblak M, Kotnik M, Solmajer T. iscovery and development of ATPase inhibitors of DNA gyrase as antibacterial agents. Curr Med Chem. 2007;14:2033–2047. doi: 10.2174/092986707781368414. [DOI] [PubMed] [Google Scholar]
  127. Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H. A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science. 1999;283:2097–2100. doi: 10.1126/science.283.5410.2097. [DOI] [PubMed] [Google Scholar]
  128. Ohkawa I, Kageyama M, Egami F. Purification and properties of pyocin S2. J Biochem. 1973;73:281–289. [PubMed] [Google Scholar]
  129. Ohr RJ, Anderson M, Shi M, Schneewind O, Missiakas D. EssD, a nuclease effector of the Staphylococcus aureus ESS pathway. J Bacteriol. 2017;199:e00528-00516. doi: 10.1128/JB.00528-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Owen S, Dietz A, Camiener G. Sparsomycin, a new antitumor antibiotic. I. Discovery and biological properties. Antimicrob Agents Ch. 1962;1962:772–779. [Google Scholar]
  131. Parret A, De Mot R. Novel bacteriocins with predicted tRNase and pore‐forming activities in Pseudomonas aeruginosa PAO1. Mol Microbiol. 2000;35:472–473. doi: 10.1046/j.1365-2958.2000.01716.x. [DOI] [PubMed] [Google Scholar]
  132. Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol. 2010;45:171–184. doi: 10.3109/10409238.2010.480968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Pei T-T, Li H, Liang X, Wang Z-H, Liu G, Wu L-L, Kim H, Xie Z, Yu M, Lin S. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nat Commun. 2020;11:1865. doi: 10.1038/s41467-020-15774-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Pei T-T, Kan Y, Wang ZH, Tang MX, Li H, Yan S, Cui Y, Zheng HY, Luo H, Liang X. Delivery of an Rhs‐family nuclease effector reveals direct penetration of the gram‐positive cell envelope by a type VI secretion system in Acidovorax citrulli. mLife. 2022;1:66–78. doi: 10.1002/mlf2.12007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Peterson SB, Bertolli SK, Mougous JD. The central role of interbacterial antagonism in bacterial life. Curr Biol. 2020;30:R1203–R1214. doi: 10.1016/j.cub.2020.06.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J. Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol. 2011;18:955–965. doi: 10.1016/j.chembiol.2011.06.011. [DOI] [PubMed] [Google Scholar]
  137. Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001;20:1829–1839. doi: 10.1093/emboj/20.8.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DA, Filloux A. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A. 2018;115:12519–12524. doi: 10.1073/pnas.1814181115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, KuÈhlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR. Mechanism and cleavage specificity of the HNH endonuclease colicin E9. J Mol Biol. 2001;314:735–749. doi: 10.1006/jmbi.2001.5189. [DOI] [PubMed] [Google Scholar]
  140. Pommer AJ, Wallis R, Moore GR, James R, Kleanthous C. Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli. Biochem J. 1998;334:387–392. doi: 10.1042/bj3340387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Putnam L, Hendricks F, Welch H. Tetracycline, a new antibiotic. Antibiot Chemother. 1953;3:1183–1186. [PubMed] [Google Scholar]
  142. Rich A. Molecular structure of the nucleic acids. Rev Mod Phys. 1959;31:191 [Google Scholar]
  143. Riley MA, Pinou T, Wertz JE, Tan Y, Valletta CM. Molecular characterization of the klebicin B plasmid of Klebsiella pneumoniae. Plasmid. 2001;45:209–221. doi: 10.1006/plas.2001.1519. [DOI] [PubMed] [Google Scholar]
  144. Ringel PD, Hu D, Basler M. The role of type VI secretion system effectors in target cell lysis and subsequent horizontal gene transfer. Cell Rep. 2017;21:3927–3940. doi: 10.1016/j.celrep.2017.12.020. [DOI] [PubMed] [Google Scholar]
  145. Rodnina MV. Translation in prokaryotes. Cold Spring Harb Perspect Biol. 2018;10:a032664. doi: 10.1101/cshperspect.a032664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Roh E, Park T-H, Kim M-i, Lee S, Ryu S, Oh C-S, Rhee S, Kim D-H, Park B-S, Heu S. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol. 2010;76:7541–7549. doi: 10.1128/AEM.03103-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Roussin M, Rabarioelina S, Cluzeau L, Cayron J, Lesterlin C, Salcedo SP, Bigot S. Identification of a contact-dependent growth inhibition (CDI) system that reduces biofilm formation and host cell adhesion of Acinetobacter baumannii DSM30011 strain. Front Microbiol. 2019;10:2450. doi: 10.3389/fmicb.2019.02450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Ruhe ZC, Low DA, Hayes CS. Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annu Rev Microbiol. 2020;74:497–520. doi: 10.1146/annurev-micro-020518-115638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Salomon D, Kinch LN, Trudgian DC, Guo X, Klimko JA, Grishin NV, Mirzaei H, Orth K. Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 2014;111:9271–9276. doi: 10.1073/pnas.1406110111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Sano Y, Kageyama M. Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol. 1981;146:733–739. doi: 10.1128/jb.146.2.733-739.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Sano Y, Matsui H, Kobayashi M, Kageyama M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol. 1993;175:2907–2916. doi: 10.1128/jb.175.10.2907-2916.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Sawa R, Takahashi Y, Hashizume H, Sasaki K, Ishizaki Y, Umekita M, Hatano M, Abe H, Watanabe T, Kinoshita N. Amycolamicin: a novel broad‐spectrum antibiotic inhibiting bacterial topoisomerase. Chemistry. 2012;18:15772–15781. doi: 10.1002/chem.201202645. [DOI] [PubMed] [Google Scholar]
  153. Schaller K, Nomura M. Colicin E2 is DNA endonuclease. Proc Natl Acad Sci U S A. 1976;73:3989–3993. doi: 10.1073/pnas.73.11.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Schärer OD. Chemistry and biology of DNA repair. Angew Chem Int Ed. 2003;42:2946–2974. doi: 10.1002/anie.200200523. [DOI] [PubMed] [Google Scholar]
  155. Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Clin Orthop Relat Res. 1944;437:3–6. doi: 10.1097/01.blo.0000175887.98112.fe. [DOI] [PubMed] [Google Scholar]
  156. Scherzinger E, Lanka E, Morelli G, Seiffert D, Yuki A. Bacteriophage‐T7‐induced DNA‐priming protein: a novel enzyme involved in DNA replication. Eur J Biochem. 1977;72:543–558. doi: 10.1111/j.1432-1033.1977.tb11278.x. [DOI] [PubMed] [Google Scholar]
  157. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001;413:814–821. doi: 10.1038/35101544. [DOI] [PubMed] [Google Scholar]
  158. Schuwirth BS, Day JM, Hau CW, Janssen GR, Dahlberg AE, Cate JHD, Vila-Sanjurjo A. Structural analysis of kasugamycin inhibition of translation. Nat Struct Mol Biol. 2006;13:879–886. doi: 10.1038/nsmb1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Senior B, Holland I. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971;68:959–963. doi: 10.1073/pnas.68.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Sensi P. Rifamycin, a new antibiotic, preliminary report. Farmaco Ed Sci. 1959;14:146–147. [PubMed] [Google Scholar]
  161. Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L, James R, Ffrench-Constant R. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett. 2002;214:241–249. doi: 10.1111/j.1574-6968.2002.tb11354.x. [DOI] [PubMed] [Google Scholar]
  162. Shine J, Dalgarno L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974;71:1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Shuman S, Glickman MS. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol. 2007;5:852–861. doi: 10.1038/nrmicro1768. [DOI] [PubMed] [Google Scholar]
  164. Sirias D, Utter DR, Gibbs KA. A family of contact-dependent nuclease effectors contain an exchangeable, species-identifying domain. bioRxiv. 2020:2020.02.20.956912 [Google Scholar]
  165. Šmarda J, Uher P, Osecký P, Šmarda J. Modes of action of colicins E4-E7: Rates of basic biosyntheses inhibition. Zentralbl Bakteriol Mikrobiol Hyg A. 1988;269:7–14. doi: 10.1016/s0176-6724(88)80079-8. [DOI] [PubMed] [Google Scholar]
  166. Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiácovo MP. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell. 2010;39:36–47. doi: 10.1016/j.molcel.2010.06.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun. 2021;12:423. doi: 10.1038/s41467-020-20726-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LR, Salinas RK. Bacterial killing via a type IV secretion system. Nat Commun. 2015;6:6453. doi: 10.1038/ncomms7453. [DOI] [PubMed] [Google Scholar]
  169. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E) XK phosphodiesterase superfamily. Nucleic Acids Res. 2012;40:7016–7045. doi: 10.1093/nar/gks382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Stempler O, Baidya AK, Bhattacharya S, Malli Mohan GB, Tzipilevich E, Sinai L, Mamou G, Ben-Yehuda S. Interspecies nutrient extraction and toxin delivery between bacteria. Nat Commun. 2017;8:315. doi: 10.1038/s41467-017-00344-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Sugiyama H, Kilkuskie RE, Chang LH, Ma LT, Hecht SM, Van der Marel GA, Van Boom JH. DNA strand scission by bleomycin: catalytic cleavage and strand selectivity. J Am Chem Soc. 1986;108:3852–3854. [Google Scholar]
  172. Takeshita M, Grollman AP, Ohtsubo E, Ohtsubo H. Interaction of bleomycin with DNA. Proc Natl Acad Sci U S A. 1978;75:5983–5987. doi: 10.1073/pnas.75.12.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Takeuchi S, Hirayama K, Ueda K, Sakai H, Yonehara H. Blasticidin S, a new antibiotic. J Antibiot (Tokyo) 1958;11:1–5. [PubMed] [Google Scholar]
  174. Theriault RJ, Karwowski JP, Jackson M, Girolami RL, Sunga GN, Vojtko CM, Coen LJ. Tiacumicins, a novel complex of 18-membered macrolide antibiotics I. Taxonomy, fermentation and antibacterial activity. J Antibiot (Tokyo) 1987;40:567–574. doi: 10.7164/antibiotics.40.567. [DOI] [PubMed] [Google Scholar]
  175. Timmis K, Hedges AJ. The killing of sensitive cells by colicin D. Biochim Biophys Acta. 1972;262:200–207. doi: 10.1016/0005-2787(72)90233-x. [DOI] [PubMed] [Google Scholar]
  176. Toba M, Masaki H, Ohta T. Colicin E8, a DNase which indicates an evolutionary relationship between colicins E2 and E3. J Bacteriol. 1988;170:3237–3242. doi: 10.1128/jb.170.7.3237-3242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Tomita K, Ogawa T, Uozumi T, Watanabe K, Masaki H. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A. 2000;97:8278–8283. doi: 10.1073/pnas.140213797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Trummal K, Aaspõllu A, Tõnismägi K, Samel M, Subbi J, Siigur J, Siigur E. Phosphodiesterase from Vipera lebetina venom-structure and characterization. Biochimie. 2014;106:48–55. doi: 10.1016/j.biochi.2014.07.020. [DOI] [PubMed] [Google Scholar]
  179. Turano H, Gomes F, Barros-Carvalho GA, Lopes R, Cerdeira L, Soares LE, Netto, Gales AC, Lincopan N. Tn 6350, a novel transposon carrying pyocin S8 genes encoding a bacteriocin with activity against carbapenemase-producing Pseudomonas aeruginosa. Antimicrob Agents Ch. 2017;61:e00100-00117. doi: 10.1128/AAC.00100-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Turano H, Gomes F, Domingos RM, Degenhardt MF, Oliveira CL, Garratt RC, Lincopan N, Soares LE., Netto Molecular structure and functional analysis of pyocin S8 from Pseudomonas aeruginosa reveals the essential requirement of a glutamate residue in the HNH motif for DNase activity. J Bacteriol. 2020;202:e00346-00320. doi: 10.1128/JB.00346-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Umezawa H, Ueda M, Maeda K, Yagishita K, Kondō S, Okami Y, Utahara R, Ōsato Y, Nitta K, Takeuchi T. Production and isolation of a new antibiotic, kanamycin. J Antibiot (Tokyo) 1957;10:181–188. [PubMed] [Google Scholar]
  182. Umezawa H, Okami Y, Hashimoto T, Suhara Y, Hamada M, Takeuchi T. A new antibiotic, kasugamycin. J Antibiot (Tokyo) 1965;18:101–103. [PubMed] [Google Scholar]
  183. Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 1966;19:200–209. [PubMed] [Google Scholar]
  184. Uphoff S, Sherratt DJ. Single-molecule analysis of bacterial DNA repair and mutagenesis. Annu Rev Biophys. 2017;46:411–432. doi: 10.1146/annurev-biophys-070816-034106. [DOI] [PubMed] [Google Scholar]
  185. Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. Elife. 2017;6:e29397. doi: 10.7554/eLife.29397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends in biochemical sciences. 2018;43:668–684. doi: 10.1016/j.tibs.2018.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK. Structure of Fok I has implications for DNA cleavage. Proc Natl Acad Sci U S A. 1998;95:10564–10569. doi: 10.1073/pnas.95.18.10564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Waksman SA, Lechevalier HA. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science. 1949;109:305–307. doi: 10.1126/science.109.2830.305. [DOI] [PubMed] [Google Scholar]
  189. Walker GC. In: Escherichia coli and Salmonella: cellular and molecular biology. 2. Neidhardt F, Curtiss RIII, Ingraham J, Lin E, Low K, Magasanik B, Reznikoff W, Riley M, Schaechter M, Umbarger H, editors. ASM Press; Washington: 1996. The SOS response of Escherichia coli; pp. 1400–1416. [Google Scholar]
  190. Walsh CT. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep. 2016;33:127–135. doi: 10.1039/c5np00035a. [DOI] [PubMed] [Google Scholar]
  191. Wang J-W, Derilo RC, Lagitnay RBJS, Wu H-P, Chen K-I, Chuang D-Y. Identification and characterization of the bacteriocin Carocin S3 from the multiple bacteriocin producing strain of Pectobacterium carotovorum subsp. carotovorum. BMC Microbiol. 2020;20:273. doi: 10.1186/s12866-020-01955-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Wang JC. Interaction between DNA and an Escherichia coli protein ω. J Mol Biol. 1971;55:523–533. doi: 10.1016/0022-2836(71)90334-2. [DOI] [PubMed] [Google Scholar]
  193. Wang R, Persky NS, Yoo B, Ouerfelli O, Smogorzewska A, Elledge SJ, Pavletich NP. Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. Science. 2014;346:1127–1130. doi: 10.1126/science.1258973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Wang S, Geng Z, Zhang H, She Z, Dong Y. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR‐NUC domain‐containing effector. FEBS J. 2021;288:5755–5767. doi: 10.1111/febs.15870. [DOI] [PubMed] [Google Scholar]
  195. Weinstein M, Luedemann G, Oden E, Wagman G, Rosselet J, Marquez J, Coniglio C, Herzog H. Gentamicin, a new antibiotic complex from Micromonospora. J Med Chem. 1963;6:463–464. doi: 10.1021/jm00340a034. [DOI] [PubMed] [Google Scholar]
  196. Wen H, Liu G, Geng Z, Zhang H, Li Y, She Z, Dong Y. Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex. Int J Biol Macromol. 2021;188:450–459. doi: 10.1016/j.ijbiomac.2021.08.029. [DOI] [PubMed] [Google Scholar]
  197. Willett JL, Gucinski GC, Fatherree JP, Low DA, Hayes CS. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc Natl Acad Sci U S A. 2015;112:11341–11346. doi: 10.1073/pnas.1512124112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Wilson DN. The A-Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol. 2009;44:393–433. doi: 10.3109/10409230903307311. [DOI] [PubMed] [Google Scholar]
  199. Wu C-C, Lin JL, Yuan HS. Structures, mechanisms, and functions of His-Me finger nucleases. Trends Biochem Sci. 2020;45:935–946. doi: 10.1016/j.tibs.2020.07.002. [DOI] [PubMed] [Google Scholar]
  200. Wyman C, Ristic D, Kanaar R. Homologous recombination-mediated double-strand break repair. DNA Repair. 2004;3:827–833. doi: 10.1016/j.dnarep.2004.03.037. [DOI] [PubMed] [Google Scholar]
  201. Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep. 2021;22:e51857. doi: 10.15252/embr.202051857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Yajima S, Inoue S, Ogawa T, Nonaka T, Ohsawa K, Masaki H. Structural basis for sequence-dependent recognition of colicin E5 tRNase by mimicking the mRNA-tRNA interaction. Nucleic Acids Res. 2006;34:6074–6082. doi: 10.1093/nar/gkl729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Yajima S, Nakanishi K, Takahashi K, Ogawa T, Hidaka M, Kezuka Y, Nonaka T, Ohsawa K, Masaki H. Relation between tRNase activity and the structure of colicin D according to X-ray crystallography. Biochem Biophys Res Commun. 2004;322:966–973. doi: 10.1016/j.bbrc.2004.07.206. [DOI] [PubMed] [Google Scholar]
  204. Yang W, Chen W-y, Wang H, Ho JW, Huang J-D, Woo PC, Lau SK, Yuen K-Y, Zhang Q, Zhou W. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis. Nucleic Acids Res. 2011;39:9803–9819. doi: 10.1093/nar/gkr660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Yoshida T, Tsuge H. Common mechanism for target specificity of protein-and DNA-targeting ADP-ribosyltransferases. Toxins (Basel) 2021;13:40. doi: 10.3390/toxins13010040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Zaw MT, Yamasaki E, Yamamoto S, Nair GB, Kawamoto K, Kurazono H. Uropathogenic specific protein gene, highly distributed in extraintestinal uropathogenic Escherichia coli, encodes a new member of HNH nuclease superfamily. Gut Pathog. 2013;5:13. doi: 10.1186/1757-4749-5-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin γ1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science. 1988;240:1198–1201. doi: 10.1126/science.3240341. [DOI] [PubMed] [Google Scholar]
  208. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 2012;7:18. doi: 10.1186/1745-6150-7-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Zhang D, Iyer LM, Aravind L. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res. 2011;39:4532–4552. doi: 10.1093/nar/gkr036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Zhao Q, Xue X, Longerich S, Sung P, Xiong Y. Structural insights into 5′ flap DNA unwinding and incision by the human FAN1 dimer. Nat Commun. 2014;5:5726. doi: 10.1038/ncomms6726. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics and Molecular Biology are provided here courtesy of Sociedade Brasileira de Genética

RESOURCES