Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(24):9313–9317. doi: 10.1073/pnas.83.24.9313

Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase.

C N Chen, S Denome, R L Davis
PMCID: PMC387128  PMID: 3025834

Abstract

We have isolated and sequenced cDNA clones representing portions of the polyadenylylated transcripts of the dunce+ gene. These define an open reading frame of 1086 bases and some of the 5'- and 3'-untranslated regions of the transcripts. The deduced amino acid sequence is strikingly homologous to the amino acid sequence of a Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase isolated from bovine brain and more weakly related to the predicted amino acid sequence of a yeast cAMP phosphodiesterase. These homologies, together with prior genetic and biochemical studies, provide unambiguous evidence that dunce+ codes for a phosphodiesterase. In addition, the dunce+ gene product shares a seven-amino acid sequence with a regulatory subunit of cAMP-dependent protein kinase that is predicted to be part of the cAMP binding site. We also identify a weak homology between a region of the dunce+ gene product and the egg-laying hormone precursor of Aplysia californica. The open reading frame is divided in the genome by four introns.

Full text

PDF
9313

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves-Piña E. O., Booker R., Duerr J. S., Livingstone M. S., Quinn W. G., Smith R. F., Sziber P. P., Tempel B. L., Tully T. P. Learning and memory in Drosophila, studied with mutants. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):831–840. doi: 10.1101/sqb.1983.048.01.086. [DOI] [PubMed] [Google Scholar]
  2. Byers D., Davis R. L., Kiger J. A., Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature. 1981 Jan 1;289(5793):79–81. doi: 10.1038/289079a0. [DOI] [PubMed] [Google Scholar]
  3. Charbonneau H., Beier N., Walsh K. A., Beavo J. A. Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9308–9312. doi: 10.1073/pnas.83.24.9308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis R. L., Davidson N. Isolation of the Drosophila melanogaster dunce chromosomal region and recombinational mapping of dunce sequences with restriction site polymorphisms as genetic markers. Mol Cell Biol. 1984 Feb;4(2):358–367. doi: 10.1128/mcb.4.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R. L., Davidson N. The memory gene dunce+ encodes a remarkable set of RNAs with internal heterogeneity. Mol Cell Biol. 1986 May;6(5):1464–1470. doi: 10.1128/mcb.6.5.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis R. L., Kauvar L. M. Drosophila cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;16:393–402. [PubMed] [Google Scholar]
  7. Davis R. L., Kiger J. A., Jr Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J Cell Biol. 1981 Jul;90(1):101–107. doi: 10.1083/jcb.90.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dudai Y., Jan Y. N., Byers D., Quinn W. G., Benzer S. dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci U S A. 1976 May;73(5):1684–1688. doi: 10.1073/pnas.73.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dudai Y. Mutations affect storage and use of memory differentially in Drosophila. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5445–5448. doi: 10.1073/pnas.80.17.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duerr J. S., Quinn W. G. Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3646–3650. doi: 10.1073/pnas.79.11.3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fickett J. W. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 1982 Sep 11;10(17):5303–5318. doi: 10.1093/nar/10.17.5303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gailey D. A., Jackson F. R., Siegel R. W. Conditioning Mutations in DROSOPHILA MELANOGASTER Affect an Experience-Dependent Behavioral Modification in Courting Males. Genetics. 1984 Apr;106(4):613–623. doi: 10.1093/genetics/106.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gailey D. A., Jackson F. R., Siegel R. W. Male courtship in Drosophila: the conditioned response to immature males and its genetic control. Genetics. 1982 Dec;102(4):771–782. doi: 10.1093/genetics/102.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurley J. B., Stryer L. Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem. 1982 Sep 25;257(18):11094–11099. [PubMed] [Google Scholar]
  15. Kauvar L. M. Defective cyclic adenosine 3':5'-monophosphate phosphodiesterase in the Drosophila memory mutant dunce. J Neurosci. 1982 Oct;2(10):1347–1358. doi: 10.1523/JNEUROSCI.02-10-01347.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kiger J. A., Jr, Golanty E. A genetically distinct form of cyclic AMP phosphodiesterase associated with chromomere 3D4 in Drosophila melanogaster. Genetics. 1979 Mar;91(3):521–535. doi: 10.1093/genetics/91.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krinks M. H., Haiech J., Rhoads A., Klee C. B. Reversible and irreversible activation of cyclic nucleotide phosphodiesterase: separation of the regulatory and catalytic domains by limited proteolysis. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;16:31–47. [PubMed] [Google Scholar]
  19. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  20. McKay D. B., Weber I. T., Steitz T. A. Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP. J Biol Chem. 1982 Aug 25;257(16):9518–9524. [PubMed] [Google Scholar]
  21. Salz H. K., Davis R. L., Kiger J. A. Genetic Analysis of Chromomere 3d4 in DROSOPHILA MELANOGASTER: The DUNCE and SPERM-AMOTILE Genes. Genetics. 1982 Apr;100(4):587–596. doi: 10.1093/genetics/100.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sass P., Field J., Nikawa J., Toda T., Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9303–9307. doi: 10.1073/pnas.83.24.9303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scheller R. H., Jackson J. F., McAllister L. B., Rothman B. S., Mayeri E., Axel R. A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell. 1983 Jan;32(1):7–22. doi: 10.1016/0092-8674(83)90492-0. [DOI] [PubMed] [Google Scholar]
  24. Sharma R. K., Wirch E., Wang J. H. Inhibition of Ca2+-activated cyclic nucleotide phosphodiesterase reaction by a heat-stable inhibitor protein from bovine brain. J Biol Chem. 1978 May 25;253(10):3575–3580. [PubMed] [Google Scholar]
  25. Solti M., Dévay P., Kiss I., Londesborough J., Friedrich P. Cyclic nucleotide phosphodiesterases in larval brain of wild type and dunce mutant strains of Drosophila melanogaster: isoenzyme pattern and activation by Ca2+/calmodulin. Biochem Biophys Res Commun. 1983 Mar 16;111(2):652–658. doi: 10.1016/0006-291x(83)90356-x. [DOI] [PubMed] [Google Scholar]
  26. Staden R. Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):521–538. doi: 10.1093/nar/12.1part2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strewler G. J., Manganiello V. C. Purification and characterization of phosphodiesterase activator from kidney. A lysosomal protease. J Biol Chem. 1979 Dec 10;254(23):11891–11898. [PubMed] [Google Scholar]
  28. Takio K., Wade R. D., Smith S. B., Krebs E. G., Walsh K. A., Titani K. Guanosine cyclic 3',5'-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry. 1984 Aug 28;23(18):4207–4218. doi: 10.1021/bi00313a030. [DOI] [PubMed] [Google Scholar]
  29. Tempel B. L., Bonini N., Dawson D. R., Quinn W. G. Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1482–1486. doi: 10.1073/pnas.80.5.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Titani K., Sasagawa T., Ericsson L. H., Kumar S., Smith S. B., Krebs E. G., Walsh K. A. Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1984 Aug 28;23(18):4193–4199. doi: 10.1021/bi00313a028. [DOI] [PubMed] [Google Scholar]
  31. Tully T., Quinn W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A. 1985 Sep;157(2):263–277. doi: 10.1007/BF01350033. [DOI] [PubMed] [Google Scholar]
  32. Walter M. F., Kiger J. A., Jr The Dunce gene of Drosophila: roles of Ca2+ and calmodulin in adenosine 3':5'-cyclic monophosphate-specific phosphodiesterase activity. J Neurosci. 1984 Feb;4(2):495–501. doi: 10.1523/JNEUROSCI.04-02-00495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weber I. T., Takio K., Titani K., Steitz T. A. The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator protein are homologous. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7679–7683. doi: 10.1073/pnas.79.24.7679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wilson I. A., Haft D. H., Getzoff E. D., Tainer J. A., Lerner R. A., Brenner S. Identical short peptide sequences in unrelated proteins can have different conformations: a testing ground for theories of immune recognition. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5255–5259. doi: 10.1073/pnas.82.16.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES