Abstract
As an enzyme of the tricarboxylic acid cycle pathway, citrate synthase participates in the generation of a variety of cellular biosynthetic intermediates and in that of reduced purine nucleotides that are used in energy generation via electron transport-linked phosphorylation reactions. It catalyzes the condensation of oxaloacetate and acetyl coenzyme A to produce citrate plus coenzyme A. In Escherichia coli this enzyme is encoded by the gltA gene. To investigate how gltA expression is regulated, a gltA-lacZ operon fusion was constructed and analyzed following aerobic and anaerobic cell growth on various types of culture media. Under aerobic culture conditions, expression was elevated to a level twofold higher than that reached under anaerobic culture conditions. ArcA functions as a repressor of gltA expression under each set of conditions: in a delta arcA strain, gltA-lacZ expression was elevated to levels two- and eightfold higher than those seen in a wild-type strain under aerobic and anaerobic conditions, respectively. This control is independent of the fnr gene product, an alternative anaerobic gene regulator in E. coli. When the richness or type of carbon compound used for cell growth was varied, gltA-lacZ expression varied by 10- to 14-fold during aerobic and anaerobic growth. This regulation was independent of both the crp and fruR gene products, suggesting that another regulatory element in E. coli is responsible for the observed control. Finally, gltA-lacZ expression was shown to be inversely proportional to the cell growth rate. These findings indicate that the regulation of gltA gene expression is complex in meeting the differential needs of the cell for biosynthesis and energy generation under various cell culture conditions.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASHWORTH J. M., KORNBERG H. L., NOTHMANN D. L. LOCATION OF THE STRUCTURAL GENE FOR CITRATE SYNTHASE ON THE CHROMOSOME OF ESCHERICHIA COLI K12. J Mol Biol. 1965 Mar;11:654–657. doi: 10.1016/s0022-2836(65)80021-3. [DOI] [PubMed] [Google Scholar]
- Chin A. M., Feldheim D. A., Saier M. H., Jr Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol. 1989 May;171(5):2424–2434. doi: 10.1128/jb.171.5.2424-2434.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotter P. A., Chepuri V., Gennis R. B., Gunsalus R. P. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J Bacteriol. 1990 Nov;172(11):6333–6338. doi: 10.1128/jb.172.11.6333-6338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotter P. A., Gunsalus R. P. Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol Lett. 1992 Feb 1;70(1):31–36. doi: 10.1016/0378-1097(92)90558-6. [DOI] [PubMed] [Google Scholar]
- Cotter P. A., Gunsalus R. P. Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol. 1989 Jul;171(7):3817–3823. doi: 10.1128/jb.171.7.3817-3823.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Lorenzo V., Herrero M., Giovannini F., Neilands J. B. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem. 1988 May 2;173(3):537–546. doi: 10.1111/j.1432-1033.1988.tb14032.x. [DOI] [PubMed] [Google Scholar]
- Duckworth H. W., Bell A. W. Large-scale production of citrate synthase from a cloned gene. Can J Biochem. 1982 Dec;60(12):1143–1147. doi: 10.1139/o82-146. [DOI] [PubMed] [Google Scholar]
- Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
- Guest J. R. Hybrid plasmids containing the citrate synthase gene (gltA) of Escherichia coli K12. J Gen Microbiol. 1981 May;124(1):17–23. doi: 10.1099/00221287-124-1-17. [DOI] [PubMed] [Google Scholar]
- Gunsalus R. P. Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol. 1992 Nov;174(22):7069–7074. doi: 10.1128/jb.174.22.7069-7074.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iuchi S., Lin E. C. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J Bacteriol. 1992 Sep;174(17):5617–5623. doi: 10.1128/jb.174.17.5617-5623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iuchi S., Lin E. C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1888–1892. doi: 10.1073/pnas.85.6.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iuchi S. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):23972–23980. [PubMed] [Google Scholar]
- Jangaard N. O., Unkeless J., Atkinson D. E. The inhibition of citrate synthase by adenosine triphosphate. Biochim Biophys Acta. 1968 Jan 8;151(1):225–235. doi: 10.1016/0005-2744(68)90177-0. [DOI] [PubMed] [Google Scholar]
- Kornberg H. L. The role and maintenance of the tricarboxylic acid cycle in Escherichia coli. Biochem Soc Symp. 1970;30:155–171. [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröder I., Darie S., Gunsalus R. P. Activation of the Escherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J Biol Chem. 1993 Jan 15;268(2):771–774. [PubMed] [Google Scholar]
- Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
- Smith M. W., Neidhardt F. C. Proteins induced by aerobiosis in Escherichia coli. J Bacteriol. 1983 Apr;154(1):344–350. doi: 10.1128/jb.154.1.344-350.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong E. K., Duckworth H. W. The quaternary structure of citrate synthase from Escherichia coli K12. Biochemistry. 1975 Jan 28;14(2):235–241. doi: 10.1021/bi00673a007. [DOI] [PubMed] [Google Scholar]
- Unden G., Trageser M., Duchêne A. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol Microbiol. 1990 Feb;4(2):315–319. doi: 10.1111/j.1365-2958.1990.tb00598.x. [DOI] [PubMed] [Google Scholar]
- Vartak N. B., Reizer J., Reizer A., Gripp J. T., Groisman E. A., Wu L. F., Tomich J. M., Saier M. H., Jr Sequence and evolution of the FruR protein of Salmonella typhimurium: a pleiotropic transcriptional regulatory protein possessing both activator and repressor functions which is homologous to the periplasmic ribose-binding protein. Res Microbiol. 1991 Nov-Dec;142(9):951–963. doi: 10.1016/0923-2508(91)90005-u. [DOI] [PubMed] [Google Scholar]
- Weickert M. J., Chambliss G. H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. doi: 10.1073/pnas.87.16.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitzman P. D. Regulation of citrate synthase activity in escherichia coli. Biochim Biophys Acta. 1966 Oct 17;128(1):213–215. doi: 10.1016/0926-6593(66)90166-4. [DOI] [PubMed] [Google Scholar]
- Weitzman P. D. Unity and diversity in some bacterial citric acid-cycle enzymes. Adv Microb Physiol. 1981;22:185–244. doi: 10.1016/s0065-2911(08)60328-8. [DOI] [PubMed] [Google Scholar]
- Wilde R. J., Guest J. R. Transcript analysis of the citrate synthase and succinate dehydrogenase genes of Escherichia coli K12. J Gen Microbiol. 1986 Dec;132(12):3239–3251. doi: 10.1099/00221287-132-12-3239. [DOI] [PubMed] [Google Scholar]
- Wright J. A., Maeba P., Sanwal B. D. Allosteric regulation of the activity of citrate snythetase of Escherichia coli by alpha-ketoglutarate. Biochem Biophys Res Commun. 1967 Oct 11;29(1):34–38. doi: 10.1016/0006-291x(67)90536-0. [DOI] [PubMed] [Google Scholar]