Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1097–1116. doi: 10.1093/genetics/156.3.1097

Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development.

D M Eisenmann 1, S K Kim 1
PMCID: PMC1461321  PMID: 11063687

Abstract

The Caenorhabditis elegans vulva develops from the progeny of three vulval precursor cells (VPCs) induced to divide and differentiate by a signal from the somatic gonad. Evolutionarily conserved Ras and Notch extracellular signaling pathways are known to function during this process. To identify novel loci acting in vulval development, we carried out a genetic screen for mutants having a protruding-vulva (Pvl) mutant phenotype. Here we report the initial genetic characterization of several novel loci: bar-1, pvl-4, pvl-5, and pvl-6. In addition, on the basis of their Pvl phenotypes, we show that the previously identified genes lin-26, mom-3/mig-14, egl-18, and sem-4 also function during vulval development. Our characterization indicates that (1) pvl-4 and pvl-5 are required for generation/survival of the VPCs; (2) bar-1, mom-3/mig-14, egl-18, and sem-4 play a role in VPC fate specification; (3) lin-26 is required for proper VPC fate execution; and (4) pvl-6 acts during vulval morphogenesis. In addition, two of these genes, bar-1 and mom-3/mig-14, are known to function in processes regulated by Wnt signaling, suggesting that a Wnt signaling pathway is acting during vulval development.

Full Text

The Full Text of this article is available as a PDF (523.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroian R. V., Koga M., Mendel J. E., Ohshima Y., Sternberg P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature. 1990 Dec 20;348(6303):693–699. doi: 10.1038/348693a0. [DOI] [PubMed] [Google Scholar]
  2. Basson M., Horvitz H. R. The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and encodes a zinc finger protein. Genes Dev. 1996 Aug 1;10(15):1953–1965. doi: 10.1101/gad.10.15.1953. [DOI] [PubMed] [Google Scholar]
  3. Beitel G. J., Clark S. G., Horvitz H. R. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature. 1990 Dec 6;348(6301):503–509. doi: 10.1038/348503a0. [DOI] [PubMed] [Google Scholar]
  4. Beitel G. J., Tuck S., Greenwald I., Horvitz H. R. The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. Genes Dev. 1995 Dec 15;9(24):3149–3162. doi: 10.1101/gad.9.24.3149. [DOI] [PubMed] [Google Scholar]
  5. Binari R. C., Staveley B. E., Johnson W. A., Godavarti R., Sasisekharan R., Manoukian A. S. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development. 1997 Jul;124(13):2623–2632. doi: 10.1242/dev.124.13.2623. [DOI] [PubMed] [Google Scholar]
  6. Blelloch R., Newman C., Kimble J. Control of cell migration during Caenorhabditis elegans development. Curr Opin Cell Biol. 1999 Oct;11(5):608–613. doi: 10.1016/s0955-0674(99)00028-9. [DOI] [PubMed] [Google Scholar]
  7. Brannon M., Gomperts M., Sumoy L., Moon R. T., Kimelman D. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 1997 Sep 15;11(18):2359–2370. doi: 10.1101/gad.11.18.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  9. Chamberlin H. M., Palmer R. E., Newman A. P., Sternberg P. W., Baillie D. L., Thomas J. H. The PAX gene egl-38 mediates developmental patterning in Caenorhabditis elegans. Development. 1997 Oct;124(20):3919–3928. doi: 10.1242/dev.124.20.3919. [DOI] [PubMed] [Google Scholar]
  10. Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M., Culotti J. G. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996 Oct 18;87(2):187–195. doi: 10.1016/s0092-8674(00)81337-9. [DOI] [PubMed] [Google Scholar]
  11. Chin-Sang I. D., George S. E., Ding M., Moseley S. L., Lynch A. S., Chisholm A. D. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell. 1999 Dec 23;99(7):781–790. doi: 10.1016/s0092-8674(00)81675-x. [DOI] [PubMed] [Google Scholar]
  12. Chisholm A. D., Horvitz H. R. Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature. 1995 Sep 7;377(6544):52–55. doi: 10.1038/377052a0. [DOI] [PubMed] [Google Scholar]
  13. Chisholm A. Control of cell fate in the tail region of C. elegans by the gene egl-5. Development. 1991 Apr;111(4):921–932. doi: 10.1242/dev.111.4.921. [DOI] [PubMed] [Google Scholar]
  14. Clandinin T. R., Katz W. S., Sternberg P. W. Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. Dev Biol. 1997 Feb 1;182(1):150–161. doi: 10.1006/dbio.1996.8471. [DOI] [PubMed] [Google Scholar]
  15. Dufourcq P., Chanal P., Vicaire S., Camut E., Quintin S., den Boer B. G., Bosher J. M., Labouesse M. lir-2, lir-1 and lin-26 encode a new class of zinc-finger proteins and are organized in two overlapping operons both in Caenorhabditis elegans and in Caenorhabditis briggsae. Genetics. 1999 May;152(1):221–235. doi: 10.1093/genetics/152.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eisenmann D. M., Kim S. K. Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics. 1997 Jun;146(2):553–565. doi: 10.1093/genetics/146.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eisenmann D. M., Maloof J. N., Simske J. S., Kenyon C., Kim S. K. The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development. 1998 Sep;125(18):3667–3680. doi: 10.1242/dev.125.18.3667. [DOI] [PubMed] [Google Scholar]
  18. Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Freyd G., Kim S. K., Horvitz H. R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990 Apr 26;344(6269):876–879. doi: 10.1038/344876a0. [DOI] [PubMed] [Google Scholar]
  20. George S. E., Simokat K., Hardin J., Chisholm A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell. 1998 Mar 6;92(5):633–643. doi: 10.1016/s0092-8674(00)81131-9. [DOI] [PubMed] [Google Scholar]
  21. Haerry T. E., Heslip T. R., Marsh J. L., O'Connor M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development. 1997 Aug;124(16):3055–3064. doi: 10.1242/dev.124.16.3055. [DOI] [PubMed] [Google Scholar]
  22. Harris J., Honigberg L., Robinson N., Kenyon C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development. 1996 Oct;122(10):3117–3131. doi: 10.1242/dev.122.10.3117. [DOI] [PubMed] [Google Scholar]
  23. Herman M. A., Horvitz H. R. The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development. 1994 May;120(5):1035–1047. doi: 10.1242/dev.120.5.1035. [DOI] [PubMed] [Google Scholar]
  24. Herman M. A., Vassilieva L. L., Horvitz H. R., Shaw J. E., Herman R. K. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell. 1995 Oct 6;83(1):101–110. doi: 10.1016/0092-8674(95)90238-4. [DOI] [PubMed] [Google Scholar]
  25. Herman R. K., Hedgecock E. M. Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis. Nature. 1990 Nov 8;348(6297):169–171. doi: 10.1038/348169a0. [DOI] [PubMed] [Google Scholar]
  26. Herman T., Hartwieg E., Horvitz H. R. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):968–973. doi: 10.1073/pnas.96.3.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Herman T., Horvitz H. R. Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):974–979. doi: 10.1073/pnas.96.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoier E. F., Mohler W. A., Kim S. K., Hajnal A. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 2000 Apr 1;14(7):874–886. [PMC free article] [PubMed] [Google Scholar]
  29. Horvitz H. R., Sulston J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980 Oct;96(2):435–454. doi: 10.1093/genetics/96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Häcker U., Lin X., Perrimon N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development. 1997 Sep;124(18):3565–3573. doi: 10.1242/dev.124.18.3565. [DOI] [PubMed] [Google Scholar]
  31. Jacobs D., Beitel G. J., Clark S. G., Horvitz H. R., Kornfeld K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics. 1998 Aug;149(4):1809–1822. doi: 10.1093/genetics/149.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jiang L. I., Sternberg P. W. Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in C. elegans. Development. 1998 Jun;125(12):2337–2347. doi: 10.1242/dev.125.12.2337. [DOI] [PubMed] [Google Scholar]
  33. Kadowaki T., Wilder E., Klingensmith J., Zachary K., Perrimon N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 1996 Dec 15;10(24):3116–3128. doi: 10.1101/gad.10.24.3116. [DOI] [PubMed] [Google Scholar]
  34. Kornfeld K. Vulval development in Caenorhabditis elegans. Trends Genet. 1997 Feb;13(2):55–61. doi: 10.1016/s0168-9525(97)01005-6. [DOI] [PubMed] [Google Scholar]
  35. Labouesse M., Sookhareea S., Horvitz H. R. The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development. 1994 Sep;120(9):2359–2368. doi: 10.1242/dev.120.9.2359. [DOI] [PubMed] [Google Scholar]
  36. Lackner M. R., Kornfeld K., Miller L. M., Horvitz H. R., Kim S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994 Jan;8(2):160–173. doi: 10.1101/gad.8.2.160. [DOI] [PubMed] [Google Scholar]
  37. Lin X., Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature. 1999 Jul 15;400(6741):281–284. doi: 10.1038/22343. [DOI] [PubMed] [Google Scholar]
  38. Malone C. J., Fixsen W. D., Horvitz H. R., Han M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development. 1999 Jun;126(14):3171–3181. doi: 10.1242/dev.126.14.3171. [DOI] [PubMed] [Google Scholar]
  39. Maloof J. N., Kenyon C. The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development. 1998 Jan;125(2):181–190. doi: 10.1242/dev.125.2.181. [DOI] [PubMed] [Google Scholar]
  40. Maloof J. N., Whangbo J., Harris J. M., Jongeward G. D., Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999 Jan;126(1):37–49. doi: 10.1242/dev.126.1.37. [DOI] [PubMed] [Google Scholar]
  41. Miller J. R., Moon R. T. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 1996 Oct 15;10(20):2527–2539. doi: 10.1101/gad.10.20.2527. [DOI] [PubMed] [Google Scholar]
  42. Miller L. M., Gallegos M. E., Morisseau B. A., Kim S. K. lin-31, a Caenorhabditis elegans HNF-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development. Genes Dev. 1993 Jun;7(6):933–947. doi: 10.1101/gad.7.6.933. [DOI] [PubMed] [Google Scholar]
  43. Newman A. P., Sternberg P. W. Coordinated morphogenesis of epithelia during development of the Caenorhabditis elegans uterine-vulval connection. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9329–9333. doi: 10.1073/pnas.93.18.9329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nishiwaki K. Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics. 1999 Jul;152(3):985–997. doi: 10.1093/genetics/152.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Riese J., Yu X., Munnerlyn A., Eresh S., Hsu S. C., Grosschedl R., Bienz M. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell. 1997 Mar 21;88(6):777–787. doi: 10.1016/s0092-8674(00)81924-8. [DOI] [PubMed] [Google Scholar]
  46. Rocheleau C. E., Downs W. D., Lin R., Wittmann C., Bei Y., Cha Y. H., Ali M., Priess J. R., Mello C. C. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell. 1997 Aug 22;90(4):707–716. doi: 10.1016/s0092-8674(00)80531-0. [DOI] [PubMed] [Google Scholar]
  47. Sawa H., Lobel L., Horvitz H. R. The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev. 1996 Sep 1;10(17):2189–2197. doi: 10.1101/gad.10.17.2189. [DOI] [PubMed] [Google Scholar]
  48. Seydoux G., Savage C., Greenwald I. Isolation and characterization of mutations causing abnormal eversion of the vulva in Caenorhabditis elegans. Dev Biol. 1993 Jun;157(2):423–436. doi: 10.1006/dbio.1993.1146. [DOI] [PubMed] [Google Scholar]
  49. Simske J. S., Kim S. K. Sequential signalling during Caenorhabditis elegans vulval induction. Nature. 1995 May 11;375(6527):142–146. doi: 10.1038/375142a0. [DOI] [PubMed] [Google Scholar]
  50. Sternberg P. W., Horvitz H. R. Pattern formation during vulval development in C. elegans. Cell. 1986 Mar 14;44(5):761–772. doi: 10.1016/0092-8674(86)90842-1. [DOI] [PubMed] [Google Scholar]
  51. Sternberg P. W., Horvitz H. R. The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell. 1989 Aug 25;58(4):679–693. doi: 10.1016/0092-8674(89)90103-7. [DOI] [PubMed] [Google Scholar]
  52. Sternberg P. W. Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature. 1988 Oct 6;335(6190):551–554. doi: 10.1038/335551a0. [DOI] [PubMed] [Google Scholar]
  53. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  54. Tan P. B., Lackner M. R., Kim S. K. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell. 1998 May 15;93(4):569–580. doi: 10.1016/s0092-8674(00)81186-1. [DOI] [PubMed] [Google Scholar]
  55. Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tuck S., Greenwald I. lin-25, a gene required for vulval induction in Caenorhabditis elegans. Genes Dev. 1995 Feb 1;9(3):341–357. doi: 10.1101/gad.9.3.341. [DOI] [PubMed] [Google Scholar]
  57. Wang B. B., Müller-Immergluck M. M., Austin J., Robinson N. T., Chisholm A., Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell. 1993 Jul 16;74(1):29–42. doi: 10.1016/0092-8674(93)90292-x. [DOI] [PubMed] [Google Scholar]
  58. Wang X., Roy P. J., Holland S. J., Zhang L. W., Culotti J. G., Pawson T. Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell. 1999 Dec;4(6):903–913. doi: 10.1016/s1097-2765(00)80220-8. [DOI] [PubMed] [Google Scholar]
  59. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. van den Heuvel M., Harryman-Samos C., Klingensmith J., Perrimon N., Nusse R. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J. 1993 Dec 15;12(13):5293–5302. doi: 10.1002/j.1460-2075.1993.tb06225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES