U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 13

1.

PMM2-congenital disorder of glycosylation

PMM2-CDG, the most common of a group of disorders of abnormal glycosylation of N-linked oligosaccharides, is divided into three clinical stages: infantile multisystem, late-infantile and childhood ataxia–intellectual disability, and adult stable disability. The clinical manifestations and course are highly variable, ranging from infants who die in the first year of life to mildly affected adults. Clinical findings tend to be similar in sibs. In the infantile multisystem presentation, infants show axial hypotonia, hyporeflexia, esotropia, and developmental delay. Feeding problems, vomiting, faltering growth, and developmental delay are frequently seen. Subcutaneous fat may be excessive over the buttocks and suprapubic region. Two distinct clinical courses are observed: (1) a nonfatal neurologic course with faltering growth, strabismus, developmental delay, cerebellar hypoplasia, and hepatopathy in infancy followed by neuropathy and retinitis pigmentosa in the first or second decade; and (2) a more severe neurologic-multivisceral course with approximately 20% mortality in the first year of life. The late-infantile and childhood ataxia–intellectual disability stage, which begins between ages three and ten years, is characterized by hypotonia, ataxia, severely delayed language and motor development, inability to walk, and IQ of 40 to 70; other findings include seizures, stroke-like episodes or transient unilateral loss of function, coagulopathy, retinitis pigmentosa, joint contractures, and skeletal deformities. In the adult stable disability stage, intellectual ability is stable; peripheral neuropathy is variable, progressive retinitis pigmentosa and myopia are seen, thoracic and spinal deformities with osteoporosis worsen, and premature aging is observed; females may lack secondary sexual development and males may exhibit decreased testicular volume. Hypogonadotropic hypogonadism and coagulopathy may occur. The risk for deep venous thrombosis is increased. [from GeneReviews]

MedGen UID:
138111
Concept ID:
C0349653
Disease or Syndrome
2.

MPI-congenital disorder of glycosylation

Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. Type I CDGs comprise defects in the assembly of the dolichol lipid-linked oligosaccharide (LLO) chain and its transfer to the nascent protein. These disorders can be identified by a characteristic abnormal isoelectric focusing profile of plasma transferrin (Leroy, 2006). For a discussion of the classification of CDGs, see CDG1A (212065). CDG Ib is clinically distinct from most other CDGs by the lack of significant central nervous system involvement. The predominant symptoms are chronic diarrhea with failure to thrive and protein-losing enteropathy with coagulopathy. Some patients develop hepatic fibrosis. CDG Ib is also different from other CDGs in that it can be treated effectively with oral mannose supplementation, but can be fatal if untreated (Marquardt and Denecke, 2003). Thus, CDG Ib should be considered in the differential diagnosis of patients with unexplained hypoglycemia, chronic diarrhea, liver disease, or coagulopathy in order to allow early diagnosis and effective therapy (Vuillaumier-Barrot et al., 2002) Freeze and Aebi (1999) reviewed CDG Ib and CDG Ic (603147). Marques-da-Silva et al. (2017) systematically reviewed the literature concerning liver involvement in CDG. [from OMIM]

MedGen UID:
400692
Concept ID:
C1865145
Disease or Syndrome
3.

ALG6-congenital disorder of glycosylation 1C

Congenital disorders of glycosylation, previously called carbohydrate-deficient glycoprotein syndromes (CDGSs), are caused by defects in mannose addition during N-linked oligosaccharide assembly. CDGs can be divided into 2 types, depending on whether they impair lipid-linked oligosaccharide (LLO) assembly and transfer (CDG I), or affect trimming of the protein-bound oligosaccharide or the addition of sugars to it (CDG II) (Orlean, 2000). CDG Ic is characterized by psychomotor retardation with delayed walking and speech, hypotonia, seizures, and sometimes protein-losing enteropathy. It is the second largest subtype of CDG (summary by Sun et al., 2005). For a discussion of the classification of CDGs, see CDG1A (212065). Freeze and Aebi (1999) reviewed CDG Ib (602579) and CDG Ic. [from OMIM]

MedGen UID:
443952
Concept ID:
C2930997
Disease or Syndrome
4.

Noonan syndrome 4

Noonan syndrome (NS) is characterized by characteristic facies, short stature, congenital heart defect, and developmental delay of variable degree. Other findings can include broad or webbed neck, unusual chest shape with superior pectus carinatum and inferior pectus excavatum, cryptorchidism, varied coagulation defects, lymphatic dysplasias, and ocular abnormalities. Although birth length is usually normal, final adult height approaches the lower limit of normal. Congenital heart disease occurs in 50%-80% of individuals. Pulmonary valve stenosis, often with dysplasia, is the most common heart defect and is found in 20%-50% of individuals. Hypertrophic cardiomyopathy, found in 20%-30% of individuals, may be present at birth or develop in infancy or childhood. Other structural defects include atrial and ventricular septal defects, branch pulmonary artery stenosis, and tetralogy of Fallot. Up to one fourth of affected individuals have mild intellectual disability, and language impairments in general are more common in NS than in the general population. [from GeneReviews]

MedGen UID:
339908
Concept ID:
C1853120
Disease or Syndrome
5.

Hereditary factor XI deficiency disease

Factor XI deficiency is an autosomal bleeding disorder characterized by reduced levels of factor XI in plasma (less than 15 IU/dL). Bleeding occurs mainly after trauma or surgery. On the basis of the concordance or discordance of F11 antigen and activity, the disorder is classified into the more frequent cross-reactive negative (CRM-) and the rarer CRM positive (CRM+) (summary by Duga and Salomon, 2009). [from OMIM]

MedGen UID:
8770
Concept ID:
C0015523
Disease or Syndrome
6.

MGAT2-congenital disorder of glycosylation

Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. These glycoconjugates play critical roles in metabolism, cell recognition and adhesion, cell migration, protease resistance, host defense, and antigenicity, among others. CDGs are divided into 2 main groups: type I CDGs (see, e.g., CDG1A, 212065) comprise defects in the assembly of the dolichol lipid-linked oligosaccharide (LLO) chain and its transfer to the nascent protein, whereas type II CDGs refer to defects in the trimming and processing of the protein-bound glycans either late in the endoplasmic reticulum or the Golgi compartments. The biochemical changes of CDGs are most readily observed in serum transferrin (TF; 190000), and the diagnosis is usually made by isoelectric focusing of this glycoprotein (reviews by Marquardt and Denecke, 2003; Grunewald et al., 2002). Genetic Heterogeneity of Congenital Disorder of Glycosylation Type II Multiple forms of CDG type II have been identified; see CDG2B (606056) through CDG2Z (620201), and CDG2AA (620454) to CDG2BB (620546). [from OMIM]

MedGen UID:
443956
Concept ID:
C2931008
Disease or Syndrome
7.

ALG8 congenital disorder of glycosylation

CDGs, previously called carbohydrate-deficient glycoprotein syndromes, grew from hereditary multisystem disorders first recognized by Jaeken et al. (1980). The characteristic biochemical abnormality of CDGs is the hypoglycosylation of glycoproteins, which is routinely determined by isoelectric focusing of serum transferrin. Type I CDG comprises those disorders in which there is a defect in the assembly of lipid-linked oligosaccharides or their transfer onto nascent glycoproteins, whereas type II CDG comprises defects of trimming, elongation, and processing of protein-bound glycans. For a general discussion of CDGs, see CDG1A (212065). CDG1H is a severe form of CDG. The majority of patients have brain involvement, liver pathology, gastrointestinal symptoms, dysmorphism (including brachydactyly), eye involvement (especially cataract), and skin symptoms. Most patients die within the first year of life (summary by Marques-da-Silva et al., 2017). [from OMIM]

MedGen UID:
419692
Concept ID:
C2931002
Disease or Syndrome
8.

ALG9 congenital disorder of glycosylation

Congenital disorders of glycosylation (CDGs) that represent defects of dolichol-linked oligosaccharide assembly are classified as CDG type I. For a general description and a discussion of the classification of CDGs, see CDG1A (212065). [from OMIM]

MedGen UID:
443955
Concept ID:
C2931006
Disease or Syndrome
9.

ALG2-congenital disorder of glycosylation

Congenital disorder of glycosylation type Ii (CDG1I) is a rare autosomal recessive disorder characterized by neurologic involvement, including a convulsive syndrome of unknown origin, axial hypotonia, and mental and motor regression (summary by Papazoglu et al., 2021). For a general discussion of CDGs, see CDG1A (212065). [from OMIM]

MedGen UID:
334618
Concept ID:
C1842836
Disease or Syndrome
10.

Noonan syndrome 10

Noonan syndrome (NS) is characterized by characteristic facies, short stature, congenital heart defect, and developmental delay of variable degree. Other findings can include broad or webbed neck, unusual chest shape with superior pectus carinatum and inferior pectus excavatum, cryptorchidism, varied coagulation defects, lymphatic dysplasias, and ocular abnormalities. Although birth length is usually normal, final adult height approaches the lower limit of normal. Congenital heart disease occurs in 50%-80% of individuals. Pulmonary valve stenosis, often with dysplasia, is the most common heart defect and is found in 20%-50% of individuals. Hypertrophic cardiomyopathy, found in 20%-30% of individuals, may be present at birth or develop in infancy or childhood. Other structural defects include atrial and ventricular septal defects, branch pulmonary artery stenosis, and tetralogy of Fallot. Up to one fourth of affected individuals have mild intellectual disability, and language impairments in general are more common in NS than in the general population. [from GeneReviews]

MedGen UID:
902892
Concept ID:
C4225280
Disease or Syndrome
11.

Congenital disorder of glycosylation, type IIw

Congenital disorder of glycosylation type IIw (CDG2W) is an autosomal dominant metabolic disorder characterized by liver dysfunction, coagulation deficiencies, and profound abnormalities in N-glycosylation of serum specific proteins. All reported patients carry the same mutation (602671.0017) (summary by Ng et al., 2021). For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066). [from OMIM]

MedGen UID:
1794196
Concept ID:
C5561986
Disease or Syndrome
12.

Factor 9 and Factor XI, combined deficiency of

MedGen UID:
377012
Concept ID:
C1851374
Disease or Syndrome
13.

Reduced factor XI activity

Decreased activity of coagulation factor XI. Factor XI, also known as plasma thromboplastin antecedent, is a serine proteinase that activates factor IX. [from HPO]

MedGen UID:
1368629
Concept ID:
C4317093
Finding
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity