Vitamin D-dependent rickets, type 1- MedGen UID:
- 124344
- •Concept ID:
- C0268689
- •
- Disease or Syndrome
Vitamin D-dependent rickets is a disorder of bone development that leads to softening and weakening of the bones (rickets). There are several forms of the condition that are distinguished primarily by their genetic causes: type 1A (VDDR1A), type 1B (VDDR1B), and type 2A (VDDR2A). There is also evidence of a very rare form of the condition, called type 2B (VDDR2B), although not much is known about this form.\n\nThe signs and symptoms of vitamin D-dependent rickets begin within months after birth, and most are the same for all types of the condition. The weak bones often cause bone pain and delayed growth and have a tendency to fracture. When affected children begin to walk, they may develop abnormally curved (bowed) legs because the bones are too weak to bear weight. Impaired bone development also results in widening of the areas near the ends of bones where new bone forms (metaphyses), especially in the knees, wrists, and ribs. Some people with vitamin D-dependent rickets have dental abnormalities such as thin tooth enamel and frequent cavities. Poor muscle tone (hypotonia) and muscle weakness are also common in this condition, and some affected individuals develop seizures.\n\nIn vitamin D-dependent rickets, there is an imbalance of certain substances in the blood. An early sign in all types of the condition is low levels of the mineral calcium (hypocalcemia), which is essential for the normal formation of bones and teeth. Affected individuals also develop high levels of a hormone involved in regulating calcium levels called parathyroid hormone (PTH), which leads to a condition called secondary hyperparathyroidism. Low levels of a mineral called phosphate (hypophosphatemia) also occur in affected individuals. Vitamin D-dependent rickets types 1 and 2 can be grouped by blood levels of a hormone called calcitriol, which is the active form of vitamin D; individuals with VDDR1A and VDDR1B have abnormally low levels of calcitriol and individuals with VDDR2A and VDDR2B have abnormally high levels.\n\nHair loss (alopecia) can occur in VDDR2A, although not everyone with this form of the condition has alopecia. Affected individuals can have sparse or patchy hair or no hair at all on their heads. Some affected individuals are missing body hair as well.
Vitamin D hydroxylation-deficient rickets, type 1B- MedGen UID:
- 374020
- •Concept ID:
- C1838657
- •
- Disease or Syndrome
Vitamin D hydroxylation-deficient rickets type 1B (VDDR1B) is caused by a defect in vitamin D 25-hydroxylation (Molin et al., 2017). The major function of vitamin D is to maintain calcium and phosphate levels in the normal range to support metabolic functions, neuromuscular transmission, and bone mineralization. Disorders of vitamin D metabolism or action lead to defective bone mineralization and clinical features including intestinal malabsorption of calcium, hypocalcemia, secondary hyperparathyroidism, increased renal clearance of phosphorus, and hypophosphatemia. The combination of hypocalcemia and hypophosphatemia causes impaired mineralization of bone that results in rickets and osteomalacia (summary by Liberman and Marx, 2001).
Rickets can occur because of inadequate dietary intake or sun exposure or because of genetic disorders. Vitamin D3 (cholecalciferol) is taken in the diet or synthesized in the skin from 7-dehydrocholesterol by ultraviolet irradiation. For vitamin D to be active, it needs to be converted to its active form, 1,25-dihydroxyvitamin D3. Vitamin D is transported in the blood by the vitamin D binding protein (DBP; 139200) to the liver, where vitamin D 25-hydroxylase (CYP2R1; 608713) is the key enzyme for 25-hydroxylation. Vitamin D 25(OH)D3, the major circulating form of vitamin D, is then transported to the kidney, where 25(OH)D3 is hydroxylated at the position of carbon 1 of the A ring, resulting in the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (summary by Christakos et al., 2010).
Congenital bile acid synthesis defect 4- MedGen UID:
- 388039
- •Concept ID:
- C1858328
- •
- Disease or Syndrome
Congenital bile acid synthesis defect type 4 (BAS defect type 4) is an anomaly of bile acid synthesis (see this term) characterized by mild cholestatic liver disease, fat malabsorption and/or neurological disease.
Vitamin D-dependent rickets, type 3- MedGen UID:
- 1725534
- •Concept ID:
- C5436733
- •
- Disease or Syndrome
Vitamin D-dependent rickets-3 (VDDR3) is characterized by early-onset rickets, reduced serum levels of the vitamin D metabolites 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and deficient responsiveness to the parent molecule as well as activated forms of vitamin D (Roizen et al., 2018).
For discussion of genetic heterogeneity of vitamin D-dependent rickets, see 264700.