Hereditary fructosuria- MedGen UID:
- 42105
- •Concept ID:
- C0016751
- •
- Disease or Syndrome
Following dietary exposure to fructose, sucrose, or sorbitol, untreated hereditary fructose intolerance (HFI) is characterized by metabolic disturbances (hypoglycemia, lactic acidemia, hypophosphatemia, hyperuricemia, hypermagnesemia, hyperalaninemia) and clinical findings (nausea, vomiting, and abdominal distress; chronic growth restriction / failure to thrive). While untreated HFI typically first manifested when fructose- and sucrose-containing foods were introduced in the course of weaning young infants from breast milk, it is now presenting earlier, due to the addition of fructose-containing nutrients in infant formulas. If the infant ingests large quantities of fructose, the infant may acutely develop lethargy, seizures, and/or progressive coma. Untreated HFI may result in renal and hepatic failure. If identified and treated before permanent organ injury occurs, individuals with HFI can experience a normal quality of life and life expectancy.
Wilson disease- MedGen UID:
- 42426
- •Concept ID:
- C0019202
- •
- Disease or Syndrome
Wilson disease is a disorder of copper metabolism that can present with hepatic, neurologic, or psychiatric disturbances, or a combination of these, in individuals ranging from age three years to older than 50 years; symptoms vary among and within families. Liver disease includes recurrent jaundice, simple acute self-limited hepatitis-like illness, autoimmune-type hepatitis, fulminant hepatic failure, or chronic liver disease. Neurologic presentations include movement disorders (tremors, poor coordination, loss of fine-motor control, chorea, choreoathetosis) or rigid dystonia (mask-like facies, rigidity, gait disturbance, pseudobulbar involvement). Psychiatric disturbance includes depression, neurotic behaviors, disorganization of personality, and, occasionally, intellectual deterioration. Kayser-Fleischer rings, frequently present, result from copper deposition in Descemet's membrane of the cornea and reflect a high degree of copper storage in the body.
Congenital glucose-galactose malabsorption- MedGen UID:
- 78647
- •Concept ID:
- C0268186
- •
- Disease or Syndrome
Glucose/galactose malabsorption (GGM) is a rare autosomal recessive disorder caused by a defect in glucose and galactose transport across the intestinal brush border. Patients with GGM present with neonatal onset of severe life-threatening watery diarrhea and dehydration. If diagnosed and treated properly, patients can fully recover and show normal growth and development (summary by Xin and Wang, 2011).
Glucoglycinuria- MedGen UID:
- 78686
- •Concept ID:
- C0268536
- •
- Disease or Syndrome
Multiple acyl-CoA dehydrogenase deficiency- MedGen UID:
- 75696
- •Concept ID:
- C0268596
- •
- Disease or Syndrome
Multiple acyl-CoA dehydrogenase deficiency (MADD) represents a clinical spectrum in which presentations can be divided into type I (neonatal onset with congenital anomalies), type II (neonatal onset without congenital anomalies), and type III (late onset). Individuals with type I or II MADD typically become symptomatic in the neonatal period with severe metabolic acidosis, which may be accompanied by profound hypoglycemia and hyperammonemia. Many affected individuals die in the newborn period despite metabolic treatment. In those who survive the neonatal period, recurrent metabolic decompensation resembling Reye syndrome and the development of hypertrophic cardiomyopathy can occur. Congenital anomalies may include dysmorphic facial features, large cystic kidneys, hypospadias and chordee in males, and neuronal migration defects (heterotopias) on brain MRI. Individuals with type III MADD, the most common presentation, can present from infancy to adulthood. The most common symptoms are muscle weakness, exercise intolerance, and/or muscle pain, although metabolic decompensation with episodes of rhabdomyolysis can also be seen. Rarely, individuals with late-onset MADD (type III) may develop severe sensory neuropathy in addition to proximal myopathy.
Renal cysts and diabetes syndrome- MedGen UID:
- 96569
- •Concept ID:
- C0431693
- •
- Disease or Syndrome
The 17q12 recurrent deletion syndrome is characterized by variable combinations of the three following findings: structural or functional abnormalities of the kidney and urinary tract, maturity-onset diabetes of the young type 5 (MODY5), and neurodevelopmental or neuropsychiatric disorders (e.g., developmental delay, intellectual disability, autism spectrum disorder, schizophrenia, anxiety, and bipolar disorder). Using a method of data analysis that avoids ascertainment bias, the authors determined that multicystic kidneys and other structural and functional kidney anomalies occur in 85% to 90% of affected individuals, MODY5 in approximately 40%, and some degree of developmental delay or learning disability in approximately 50%. MODY5 is most often diagnosed before age 25 years (range: age 10-50 years).
Proteinuria, low molecular weight, with hypercalciuria and nephrocalcinosis- MedGen UID:
- 333426
- •Concept ID:
- C1839874
- •
- Disease or Syndrome
Low molecular weight proteinuria with hypercalciuria and nephrocalcinosis is a form of X-linked hypercalciuric nephrocalcinosis, a group of disorders characterized by proximal renal tubular reabsorptive failure, hypercalciuria, nephrocalcinosis, and renal insufficiency. These disorders have also been referred to as the 'Dent disease complex' (Scheinman, 1998; Gambaro et al., 2004). For a general discussion of Dent disease, see 300009.
Dent disease type 1- MedGen UID:
- 336322
- •Concept ID:
- C1848336
- •
- Disease or Syndrome
Dent disease, an X-linked disorder of proximal renal tubular dysfunction, is characterized by low molecular weight (LMW) proteinuria, hypercalciuria, and at least one additional finding including nephrocalcinosis, nephrolithiasis, hematuria, hypophosphatemia, chronic kidney disease (CKD), and evidence of X-linked inheritance. Males younger than age ten years may manifest only LMW proteinuria and/or hypercalciuria, which are usually asymptomatic. Thirty to 80% of affected males develop end-stage renal disease (ESRD) between ages 30 and 50 years; in some instances ESRD does not develop until the sixth decade of life or later. The disease may also be accompanied by rickets or osteomalacia, growth restriction, and short stature. Disease severity can vary within the same family. Males with Dent disease 2 (caused by pathogenic variants in OCRL) may also have mild intellectual disability, cataracts, and/or elevated muscle enzymes. Due to random X-chromosome inactivation, some female carriers may manifest hypercalciuria and, rarely, renal calculi and moderate LMW proteinuria. Females rarely develop CKD.
Rod-cone dystrophy, sensorineural deafness, and Fanconi-type renal dysfunction- MedGen UID:
- 376565
- •Concept ID:
- C1849333
- •
- Disease or Syndrome
Rod-cone dystrophy, sensorineural deafness, and Fanconi-type renal dysfunction (RCDFRD) is characterized by onset of hearing impairment and reduced vision within the first 5 years of life. Renal dysfunction results in rickets-like skeletal changes, and death may occur in childhood or young adulthood due to renal failure (Beighton et al., 1993).
Nephropathic cystinosis- MedGen UID:
- 419735
- •Concept ID:
- C2931187
- •
- Disease or Syndrome
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation.
Pancreatic hypoplasia-diabetes-congenital heart disease syndrome- MedGen UID:
- 444022
- •Concept ID:
- C2931296
- •
- Disease or Syndrome
This syndrome has characteristics of partial pancreatic agenesis, diabetes mellitus, and heart anomalies (including transposition of the great vessels, ventricular or atrial septal defects, pulmonary stenosis, or patent ductus arteriosis). It has been described in one Japanese family, in which the mother and at least two of her four children were affected (another two children died shortly after birth). The syndrome appears to be inherited as an autosomal dominant trait.
Fanconi renotubular syndrome 2- MedGen UID:
- 462002
- •Concept ID:
- C3150652
- •
- Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the SLC34A1 gene.
Arthrogryposis, renal dysfunction, and cholestasis 2- MedGen UID:
- 462022
- •Concept ID:
- C3150672
- •
- Disease or Syndrome
Arthrogryposis, renal dysfunction, and cholestasis-2 (ARCS2) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells (Qiu et al., 2019).
For a general phenotypic description and a discussion of genetic heterogeneity of ARCS, see ARCS1 (208085).
Familial renal glucosuria- MedGen UID:
- 757652
- •Concept ID:
- C3245525
- •
- Disease or Syndrome
Patients with familial renal glucosuria have decreased renal tubular resorption of glucose form the urine in the absence of hyperglycemia and any other signs of tubular dysfunction. Glucosuria in these patients can range from less than 1 to over 150 g/1.73 m(2) per day (Santer and Calado, 2010).
Fanconi-Bickel syndrome- MedGen UID:
- 501176
- •Concept ID:
- C3495427
- •
- Disease or Syndrome
Fanconi-Bickel syndrome is a rare but well-defined clinical entity, inherited in an autosomal recessive mode and characterized by hepatorenal glycogen accumulation, proximal renal tubular dysfunction, and impaired utilization of glucose and galactose (Manz et al., 1987). Because no underlying enzymatic defect in carbohydrate metabolism had been identified and because metabolism of both glucose and galactose is impaired, a primary defect of monosaccharide transport across the membranes had been suggested (Berry et al., 1995; Fellers et al., 1967; Manz et al., 1987; Odievre, 1966).
Use of the term glycogenosis type XI introduced by Hug (1987) is to be discouraged because glycogen accumulation is not due to the proposed functional defect of phosphoglucomutase, an essential enzyme in the common degradative pathways of both glycogen and galactose, but is secondary to nonfunctional glucose transport.
Karyomegalic interstitial nephritis- MedGen UID:
- 766688
- •Concept ID:
- C3553774
- •
- Disease or Syndrome
Karyomegalic tubulointerstitial nephritis (KMIN) is a rare kidney disease characterized clinically by onset in the third decade of progressive renal failure. Renal biopsy shows chronic tubulointerstitial nephritis and interstitial fibrosis associated with enlarged and atypical tubular epithelial cell nuclei (summary by Baba et al., 2006).
Fanconi renotubular syndrome 3- MedGen UID:
- 816430
- •Concept ID:
- C3810100
- •
- Disease or Syndrome
Fanconi renotubular syndrome-3 (FRTS3) is an autosomal dominant disorder characterized by rickets, impaired growth, glucosuria, generalized aminoaciduria, phosphaturia, metabolic acidosis, and low molecular weight proteinuria (summary by Klootwijk et al., 2014).
For a general phenotypic description and a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Fanconi renotubular syndrome 4 with maturity-onset diabetes of the young- MedGen UID:
- 863399
- •Concept ID:
- C4014962
- •
- Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the HNF4A gene.
Seckel syndrome 10- MedGen UID:
- 934614
- •Concept ID:
- C4310647
- •
- Disease or Syndrome
Any Seckel syndrome in which the cause of the disease is a mutation in the NSMCE2 gene.
Juvenile cataract-microcornea-renal glucosuria syndrome- MedGen UID:
- 934773
- •Concept ID:
- C4310806
- •
- Disease or Syndrome
Juvenile cataract - microcornea - renal glucosuria is an extremely rare autosomal dominant association reported in a single Swiss family and characterized clinically by juvenile cataract associated with bilateral microcornea, and renal glucosuria without other renal tubular defects.
Fanconi renotubular syndrome 1- MedGen UID:
- 1635492
- •Concept ID:
- C4551503
- •
- Disease or Syndrome
Diabetes mellitus, permanent neonatal 3- MedGen UID:
- 1717271
- •Concept ID:
- C5394303
- •
- Disease or Syndrome
Permanent neonatal diabetes mellitus-3 (PNDM3) is characterized by the onset of mild to severe hyperglycemia within the first months of life, and requires lifelong therapy (summary by Babenko et al., 2006). Some patients also have neurologic features, including developmental delay and epilepsy (Proks et al., 2006; Babenko et al., 2006). The triad of developmental delay, epilepsy, and neonatal diabetes is known as DEND.
For a discussion of genetic heterogeneity of permanent neonatal diabetes mellitus, see PNDM1 (606176).
Fanconi renotubular syndrome 5- MedGen UID:
- 1711127
- •Concept ID:
- C5394473
- •
- Disease or Syndrome
Fanconi renotubular syndrome-5 (FRTS5) is a mitochondrial disorder characterized by proximal renotubular dysfunction from birth, followed by progressive kidney disease and pulmonary fibrosis. It occurs only in individuals of Acadian descent (Crocker et al., 1997 and Hartmannova et al., 2016).
For a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Mitochondrial complex IV deficiency, nuclear type 1- MedGen UID:
- 1750917
- •Concept ID:
- C5435656
- •
- Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 1 (MC4DN1) is an autosomal recessive metabolic disorder characterized by rapidly progressive neurodegeneration and encephalopathy with loss of motor and cognitive skills between about 5 and 18 months of age after normal early development. Affected individuals show hypotonia, failure to thrive, loss of the ability to sit or walk, poor communication, and poor eye contact. Other features may include oculomotor abnormalities, including slow saccades, strabismus, ophthalmoplegia, and nystagmus, as well as deafness, apneic episodes, ataxia, tremor, and brisk tendon reflexes. Brain imaging shows bilateral symmetric lesions in the basal ganglia, consistent with a clinical diagnosis of Leigh syndrome (see 256000). Some patients may also have abnormalities in the brainstem and cerebellum. Laboratory studies usually show increased serum and CSF lactate and decreased levels and activity of mitochondrial respiratory complex IV in patient tissues. There is phenotypic variability, but death in childhood, often due to central respiratory failure, is common (summary by Tiranti et al., 1998; Tiranti et al., 1999; Teraoka et al., 1999; Poyau et al., 2000)
Genetic Heterogeneity of Mitochondrial Complex IV Deficiency
Most isolated COX deficiencies are inherited as autosomal recessive disorders caused by mutations in nuclear-encoded genes; mutations in the mtDNA-encoded COX subunit genes are relatively rare (Shoubridge, 2001; Sacconi et al., 2003).
Mitochondrial complex IV deficiency caused by mutation in nuclear-encoded genes, in addition to MC4DN1, include MC4DN2 (604377), caused by mutation in the SCO2 gene (604272); MC4DN3 (619046), caused by mutation in the COX10 gene (602125); MC4DN4 (619048), caused by mutation in the SCO1 gene (603664); MC4DN5 (220111), caused by mutation in the LRPPRC gene (607544); MC4DN6 (615119), caused by mutation in the COX15 gene (603646); MC4DN7 (619051), caused by mutation in the COX6B1 gene (124089); MC4DN8 (619052), caused by mutation in the TACO1 gene (612958); MC4DN9 (616500), caused by mutation in the COA5 gene (613920); MC4DN10 (619053), caused by mutation in the COX14 gene (614478); MC4DN11 (619054), caused by mutation in the COX20 gene (614698); MC4DN12 (619055), caused by mutation in the PET100 gene (614770); MC4DN13 (616501), caused by mutation in the COA6 gene (614772); MC4DN14 (619058), caused by mutation in the COA3 gene (614775); MC4DN15 (619059), caused by mutation in the COX8A gene (123870); MC4DN16 (619060), caused by mutation in the COX4I1 gene (123864); MC4DN17 (619061), caused by mutation in the APOPT1 gene (616003); MC4DN18 (619062), caused by mutation in the COX6A2 gene (602009); MC4DN19 (619063), caused by mutation in the PET117 gene (614771); MC4DN20 (619064), caused by mutation in the COX5A gene (603773); MC4DN21 (619065), caused by mutation in the COXFA4 gene (603883); MC4DN22 (619355), caused by mutation in the COX16 gene (618064); and MC4DN23 (620275), caused by mutation in the COX11 gene (603648).
Mitochondrial complex IV deficiency has been associated with mutations in several mitochondrial genes, including MTCO1 (516030), MTCO2 (516040), MTCO3 (516050), MTTS1 (590080), MTTL1 (590050), and MTTN (590010).
Combined oxidative phosphorylation defect type 26- MedGen UID:
- 1799164
- •Concept ID:
- C5567741
- •
- Disease or Syndrome
Peripheral neuropathy with variable spasticity, exercise intolerance, and developmental delay (PNSED) is an autosomal recessive multisystemic disorder with highly variable manifestations, even within the same family. Some patients present in infancy with hypotonia and global developmental delay with poor or absent motor skill acquisition and poor growth, whereas others present as young adults with exercise intolerance and muscle weakness. All patients have signs of a peripheral neuropathy, usually demyelinating, with distal muscle weakness and atrophy and distal sensory impairment; many become wheelchair-bound. Additional features include spasticity, extensor plantar responses, contractures, cerebellar signs, seizures, short stature, and rare involvement of other organ systems, including the heart, pancreas, and kidney. Biochemical analysis may show deficiencies in mitochondrial respiratory complex enzyme activities in patient tissue, although this is not always apparent. Lactate is frequently increased, suggesting mitochondrial dysfunction (Powell et al., 2015; Argente-Escrig et al., 2022).
For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).