Expression profiling by high throughput sequencing Genome binding/occupancy profiling by high throughput sequencing
Summary
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin, like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells silence genes in traditional Polycomb domains and in generally inactive chromatin like embryonic somatic cells. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly-induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Overall design
RNAseq and ChIPseq of whole ovaries and purified germ cells and germ cell nuclei in wild type and Polycomb-group mutant flies