U.S. flag

An official website of the United States government

Format
Sort by

Send to:

Choose Destination

Links from PMC

Items: 3

1.

The Gcn4 Transcription Factor Reduces Protein Synthesis Capacity and Extends Yeast Lifespan

(Submitter supplied) In Saccharomyces cerevisiae, deletion of genes encoding proteins of the large ribosomal subunit (RPLs) increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the mRNA and protein abundance, the ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and to increase yeast lifespan. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Other
Platforms:
GPL17342 GPL19756
52 Samples
Download data
Series
Accession:
GSE85591
ID:
200085591
2.

The Gcn4 Transcription Factor Reduces Protein Synthesis Capacity and Extends Yeast Lifespan [RNA-Seq]

(Submitter supplied) In Saccharomyces cerevisiae, deletion of genes encoding proteins of the large ribosomal subunit (RPLs) increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the mRNA and protein abundance, the ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and to increase yeast lifespan. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL17342 GPL19756
50 Samples
Download data: CSV, TXT
Series
Accession:
GSE85590
ID:
200085590
3.

The Gcn4 Transcription Factor Reduces Protein Synthesis Capacity and Extends Yeast Lifespan [ChIP-Seq]

(Submitter supplied) In Saccharomyces cerevisiae, deletion of genes encoding proteins of the large ribosomal subunit (RPLs) increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the mRNA and protein abundance, the ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and to increase yeast lifespan. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
2 Samples
Download data: CSV
Series
Accession:
GSE85588
ID:
200085588
Format
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_675cecef62eb8717599e361f|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center