U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Large-scale reporter assay to assess expression and coactivator specificity of UAS-core promoter combinations

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL31112
44 Samples
Download data: TXT
Series
Accession:
GSE217230
ID:
200217230
2.

Large-scale reporter assay to assess expression and coactivator specificity of UAS-core promoter combinations [III]

(Submitter supplied) Three general classes of yeast protein-coding genes are distinguished by their dependence on the transcription cofactors TFIID, SAGA and Mediator (MED) Tail, but little is known about whether this dependence is determined by the core promoter, Upstream activation sites (UAS), or other gene features. It is also unclear whether UASs can broadly activate transcription from the different promoter classes or whether efficient transcription requires matching UASs and promoters of similar gene class. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL31112
8 Samples
Download data: TXT
Series
Accession:
GSE227006
ID:
200227006
3.

Large-scale reporter assay to assess expression and coactivator specificity of UAS-core promoter combinations (RNA)

(Submitter supplied) Three general classes of yeast protein-coding genes are distinguished by their dependence on the transcription cofactors TFIID, SAGA and Mediator (MED) Tail, but little is known about whether this dependence is determined by the core promoter, Upstream activation sites (UAS), or other gene features. It is also unclear whether UASs can broadly activate transcription from the different promoter classes or whether efficient transcription requires matching UASs and promoters of similar gene class. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL31112
24 Samples
Download data: TXT
Series
Accession:
GSE217229
ID:
200217229
4.

Large-scale reporter assay to assess expression and coactivator specificity of UAS-core promoter combinations (DNA)

(Submitter supplied) Three general classes of yeast protein-coding genes are distinguished by their dependence on the transcription cofactors TFIID, SAGA and Mediator (MED) Tail, but little is known about whether this dependence is determined by the core promoter, Upstream activation sites (UAS), or other gene features. It is also unclear whether UASs can broadly activate transcription from the different promoter classes or whether efficient transcription requires matching UASs and promoters of similar gene class. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL31112
12 Samples
Download data: TXT
Series
Accession:
GSE217227
ID:
200217227
5.

Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17342
256 Samples
Download data: CSV, WIG
Series
Accession:
GSE190778
ID:
200190778
6.

Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters

(Submitter supplied) Mediator is a conserved, essential transcriptional coactivator complex, but its in vivo functions have remained unclear due to conflicting data regarding its genome-wide binding pattern obtained by genome-wide ChIP. Here, we used ChEC-seq, a method orthogonal to ChIP, to generate a high-resolution map of Mediator binding to the yeast genome. We find that Mediator associates with upstream activating sequences (UASs) rather than the core promoter or gene body under all conditions tested. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
76 Samples
Download data: BED, RTF, WIG
Series
Accession:
GSE81289
ID:
200081289
7.

Hsf1-ChIP-on-chip: Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters

(Submitter supplied) An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by array
Platform:
GPL21864
24 Samples
Download data: TXT
Series
Accession:
GSE81987
ID:
200081987
8.

HSF1 ChIP-seq: Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters

(Submitter supplied) An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21944 GPL19756
10 Samples
Download data: BW
Series
Accession:
GSE81787
ID:
200081787
9.

HSF1 and MOT1-expression and binding: Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Genome binding/occupancy profiling by array
4 related Platforms
72 Samples
Download data: BW, TXT
Series
Accession:
GSE81481
ID:
200081481
10.

MOT1-expression: Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters

(Submitter supplied) An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL11232
16 Samples
Download data: TXT
Series
Accession:
GSE81480
ID:
200081480
11.

HSF1-expression: Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters

(Submitter supplied) An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL11232
22 Samples
Download data: TXT
Series
Accession:
GSE81479
ID:
200081479
12.

Effect of loss of function of Gal11/Med15 and Med3 from the Mediator tail module in budding yeast

(Submitter supplied) Gene expression was compared for wild type yeast (BY4741) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3∆ strain. The gal11-myc allele shows a partial loss of function when combined with med3∆. Expression was analyzed for yeast grown in YPD as well as in CSM. We also examined gene expression of the wild type strain BY4742 grown in YPD and include that data here.
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL2529
21 Samples
Download data: CEL, TXT
Series
Accession:
GSE31774
ID:
200031774
13.

Evolutionarily conserved C-terminal region of TAF9 is critical for SAGA and TFIID recruitment to promoters and transcriptional activation

(Submitter supplied) TFIID and SAGA complexes play a critical role in RNA Polymerase II dependent activated transcription. Although the two regulatory complexes are recruited to promoters by activation domain-interactions, the contribution of the different subunits or the different domains of the individual subunits is not completely understood. Taf9 is a shared subunit in TFIID and SAGA and has an N-terminal H3-like histone fold domain and a highly conserved C-terminal domain, Taf9-CTD. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL14009
14 Samples
Download data: TXT
Series
Accession:
GSE44544
ID:
200044544
14.

Transcription of nearly all yeast RNA Polymerase II-transcribed genes is dependent on transcription factor TFIID

(Submitter supplied) Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We reexamined this longstanding problem by rapid depletion of TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Tafs 1,2,7,11, and 13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing and TATA-less gene classes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL17342
50 Samples
Download data: WIG
Series
Accession:
GSE97081
ID:
200097081
15.

Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID

(Submitter supplied) RNA Pol II transcription has been implied to be either regulated by the general transcription factor TFIID or the co-activator SAGA. Also, this dominancy of either SAGA or TFIID might be according to the existance, or not, of a TATA consensus sequence. We used microarrays to analyse newly-synthesized RNA in two mutants that allow conditional nuclear depletion of Taf4 or Taf5 to reevaluate whether some genes are more affected than others.
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL2529
16 Samples
Download data: CEL
Series
Accession:
GSE96830
ID:
200096830
16.

Two separate roles for the transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA [ChIP-Seq]

(Submitter supplied) Deletions within genes coding for subunits of the transcription coactivator SAGA caused strong genome-wide defects in transcription and SAGA-mediated chromatin modifications. In contrast, rapid SAGA depletion produced only modest transcription defects at 13% of protein-coding genes – genes that are generally more sensitive to rapid TFIID depletion. However, transcription of these “coactivator-redundant” genes is strongly affected by rapid depletion of both factors, showing the overlapping functions of TFIID and SAGA at this gene set. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
32 Samples
Download data: WIG
Series
Accession:
GSE142183
ID:
200142183
17.

Two separate roles for the transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA [RNA-Seq]

(Submitter supplied) Deletions within genes coding for subunits of the transcription coactivator SAGA caused strong genome-wide defects in transcription and SAGA-mediated chromatin modifications. In contrast, rapid SAGA depletion produced only modest transcription defects at 13% of protein-coding genes – genes that are generally more sensitive to rapid TFIID depletion. However, transcription of these “coactivator-redundant” genes is strongly affected by rapid depletion of both factors, showing the overlapping functions of TFIID and SAGA at this gene set. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17342
11 Samples
Download data: CSV
Series
Accession:
GSE142182
ID:
200142182
18.

Two separate roles for the transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
128 Samples
Download data: CSV, WIG
Series
Accession:
GSE142122
ID:
200142122
19.

Two separate roles for the transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA [ChEC-Seq]

(Submitter supplied) Deletions within genes coding for subunits of the transcription coactivator SAGA caused strong genome-wide defects in transcription and SAGA-mediated chromatin modifications. In contrast, rapid SAGA depletion produced only modest transcription defects at 13% of protein-coding genes – genes that are generally more sensitive to rapid TFIID depletion. However, transcription of these “coactivator-redundant” genes is strongly affected by rapid depletion of both factors, showing the overlapping functions of TFIID and SAGA at this gene set. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
25 Samples
Download data: WIG
Series
Accession:
GSE142120
ID:
200142120
20.

Two separate roles for the transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA [RNA]

(Submitter supplied) Deletions within genes coding for subunits of the transcription coactivator SAGA caused strong genome-wide defects in transcription and SAGA-mediated chromatin modifications. In contrast, rapid SAGA depletion produced only modest transcription defects at 13% of protein-coding genes – genes that are generally more sensitive to rapid TFIID depletion. However, transcription of these “coactivator-redundant” genes is strongly affected by rapid depletion of both factors, showing the overlapping functions of TFIID and SAGA at this gene set. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17342
60 Samples
Download data: CSV
Series
Accession:
GSE133004
ID:
200133004
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_67519bc07201926b9b036733|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center