U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Specialization of the Drosophila nuclear export family protein, Nxf3, for piRNA precursor export

(Submitter supplied) The piRNA pathway is a conserved small RNA-based immune system that protects animal germ cell genomes from the harmful effects of transposon mobilisation. In Drosophila ovaries, most piRNAs originate from dual-strand clusters, which generate piRNAs from both genomic strands. Dual-strand clusters use non-canonical transcription mechanisms. Although transcribed by RNA polymerase II, cluster transcripts lack splicing signatures and polyA tails. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL21306
7 Samples
Download data: BW
Series
Accession:
GSE133528
ID:
200133528
2.

Splicing-independent loading of TREX on nascent RNA is required for efficient transcription of dual-strand piRNA clusters in Drosophila

(Submitter supplied) The conserved THO/TREX complex is critical for pre-mRNA processing and mRNA nuclear export. In Metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small non-coding RNAs that control expression of transposable elements (TE) in the Drosophila germline. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275
15 Samples
Download data: BW
Series
Accession:
GSE79325
ID:
200079325
3.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
24 Samples
Download data: BW, TXT, WIG
Series
Accession:
GSE59610
ID:
200059610
4.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [cuff RNA-seq]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13304
2 Samples
Download data: TXT
Series
Accession:
GSE59609
ID:
200059609
5.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [cuff smallRNA]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
2 Samples
Download data: TXT
Series
Accession:
GSE59608
ID:
200059608
6.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [Rhino RNA-seq]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13304
2 Samples
Download data: BW
Series
Accession:
GSE59607
ID:
200059607
7.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [small RNA-IP]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
10 Samples
Download data: TXT
Series
Accession:
GSE59606
ID:
200059606
8.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [run-on]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13304
2 Samples
Download data: BW
Series
Accession:
GSE59605
ID:
200059605
9.

Trans-generationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing [ChIP-seq]

(Submitter supplied) Small non-coding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of Metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13304
6 Samples
Download data: WIG
Series
Accession:
GSE59604
ID:
200059604
10.

A Pandas complex adapted for piRNA-guided transposon silencing and heterochromatin formation

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL23702 GPL17275
16 Samples
Download data: BIGWIG
Series
Accession:
GSE130042
ID:
200130042
11.

A Pandas complex adapted for piRNA-guided transposon silencing (CLIP-seq)

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL23702
4 Samples
Download data: BIGWIG
Series
Accession:
GSE130041
ID:
200130041
12.

A Pandas complex adapted for piRNA-guided transposon silencing (RNA-seq)

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL17275 GPL23702
12 Samples
Download data: BIGWIG, TXT
Series
Accession:
GSE121158
ID:
200121158
13.

UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Other; Expression profiling by high throughput sequencing
Platforms:
GPL13304 GPL9061 GPL6629
15 Samples
Download data: BEDGRAPH, CEL, TXT
Series
Accession:
GSE35638
ID:
200035638
14.

UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery [RNA-Seq and RIP-Seq]

(Submitter supplied) The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL9061
9 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE35637
ID:
200035637
15.

UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery [tiling array]

(Submitter supplied) The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL6629
6 Samples
Download data: CEL, TXT
Series
Accession:
GSE35636
ID:
200035636
16.

piRNA-mediated regulation of transposon alternative splicing in soma and germline

(Submitter supplied) Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. We show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17275
20 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE103582
ID:
200103582
17.

Channel Nuclear Pore Complex subunits are required for transposon silencing in Drosophila

(Submitter supplied) We investigate the transcription and export of the uni-strand piRNA cluster flamenco and report the involvement of Nuclear Pore Complex subunits in its nuclear export and specification as a piRNA precursor.
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Other
Platform:
GPL21306
28 Samples
Download data: BW
Series
Accession:
GSE152297
ID:
200152297
18.

High throughput sequencing of Piwi bound piRNAs from Drosophila ovaries in which key factors for primary piRNA biogenesis in somatic support cells were knocked down using RNAi

(Submitter supplied) In Drosophila, PIWI proteins and bound PIWI interacting RNAs (piRNAs) form the core of a small RNA mediated defense system against selfish genetic elements. Within germline cells piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL9061
5 Samples
Download data: TXT
Series
Accession:
GSE23560
ID:
200023560
19.

piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

(Submitter supplied) PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BW, TXT
Series
Accession:
GSE71775
ID:
200071775
20.

The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway protects animal genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA- guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (Silencing Factor interacting Nuclear eXport variant), an interdependent protein complex required for Piwi-mediated co-transcriptional silencing in Drosophila. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL17275
54 Samples
Download data: BW, TXT
Series
Accession:
GSE120617
ID:
200120617
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_674c2583d8260840384c0c73|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center