U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Molecular insights into induced pluripotency mediated by the OCT4, SOX2, KLF and c-MYC gene regulatory network

(Submitter supplied) Human somatic fibroblasts can be reprogrammed to induced pluripotent stem (iPS) cells by exogenic expression of the Yamanaka factors (OCT4, SOX2, KLF4 and MYC) after about 1 month. To gain some insight into the early processes operative in fibroblast reprogramming, we profiled genome-wide transcription levels using Illumina microarrays in the starting donor cells-human foreskin fibroblast (HFF1) cells and at three time points after OSKM transduction (24 h, 48 h, 72 h), as well as two iPS cell lines (iPS2, iPS4) and hES cell lines (H1, H9). more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6883
14 Samples
Download data: TXT
Series
Accession:
GSE28688
ID:
200028688
2.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
3.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
4.

C/EBPα poises B cells for rapid reprogramming into iPS cells [ChIP-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE52373
ID:
200052373
5.

C/EBPα poises B cells for rapid reprogramming into iPS cells [array]

(Submitter supplied) Somatic cell reprogramming into pluripotent stem cells induced by Oct4, Sox2, Klf4 and Myc (OSKM) occurs at low frequencies and with a considerable delay involving a stochastic phase. In contrast, transdifferentiation of B cells into macrophages induced by C/EBPα is fully efficient and initiated almost immediately. We now discovered that a pulse of C/EBPα in B cell precursors followed by OSKM expression dramatically enhances reprogramming to pluripotency, overcoming the stochastic phase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
44 Samples
Download data: TXT
Series
Accession:
GSE46321
ID:
200046321
6.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
7.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
8.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
9.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
10.

OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells

(Submitter supplied) While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
17 Samples
Download data: TXT
Series
Accession:
GSE77550
ID:
200077550
11.

Selective eradication of leukemia cells with reprogramming factors

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21273
72 Samples
Download data: NARROWPEAK, TXT
Series
Accession:
GSE121123
ID:
200121123
12.

Selective eradication of leukemia cells with reprogramming factors (RNA-Seq)

(Submitter supplied) We used RNA-seq to evaluate the global programme of gene expression after Dox inducible Yamanaka factors ectopic expression during this biological process.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21273
36 Samples
Download data: TXT
Series
Accession:
GSE121122
ID:
200121122
13.

Selective eradication of leukemia cells with reprogramming factors (ATAC-Seq)

(Submitter supplied) We used ATAC-seq to evaluate the global programme of chromtain accessibility after Dox inducible Yamanaka factors ectopic expression during this biological process.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21273
36 Samples
Download data: NARROWPEAK
Series
Accession:
GSE121121
ID:
200121121
14.

Selective elimination of leukemia cells by reprogramming factors

(Submitter supplied) To investigate the molecular mechanism for the elimination of leukemia cells after Dox induced OSKM expression, we sorted MLL-AF9 leukemia cells from Dox untreated and treated groups (48h and 72h) leukemic mice for gene expression profiling analysis.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
9 Samples
Download data: CEL
Series
Accession:
GSE64414
ID:
200064414
15.

Transcriptomic analysis of pancreas and kidney upon induction of reprogramming

(Submitter supplied) We profiled total mRNA of pancreas and kidney tissues of 3 different strains (p53-null; In4a/Arf-null and WT) of reprogrammable mouse lines (they all express OCT4, SOX2, KLF4, C-MYC under the control of a tetracycline promoter, activated by doxycycline)
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
30 Samples
Download data: TXT
Series
Accession:
GSE77722
ID:
200077722
16.

Genome-wide map of SET1A occupancy in mouse ES cells

(Submitter supplied) To identify SET1A genome-wide occupancy and further unveil its role in transcriptional regulation in mouse ES cells, we carried out chromatin immunoprecipitation followed by high sequencing (ChIP-seq).We established a stable ES cell line expressing 2X Flag tagged SET1A and performed ChIP with anti-Flag M2 beads, followed by deep sequencing. We found that the SET1A peaks show an outstanding enrichment in promoter region. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED, BW
Series
Accession:
GSE66067
ID:
200066067
17.

Gene expression profiles of induced pluripotent stem cells (iPSCs) and skin fibroblasts from orangutans

(Submitter supplied) Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.
Organism:
Homo sapiens; Pongo abelii
Type:
Expression profiling by array
Platform:
GPL571
8 Samples
Download data: CEL
Series
Accession:
GSE69603
ID:
200069603
18.

Transcriptome Signature and Regulation in Human Somatic Cell Reprogramming

(Submitter supplied) Reprogramming of somatic cells produces induced pluripotent stem cells (iPSCs) that are invaluable resources for biomedical research. Transcriptional and epigenetic changes have been investigated to facilitate our understanding of the reprogramming process. Here, we extended the previous transcriptome studies by performing RNA-seq on cells defined by a combination of multiple cellular surface markers. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
30 Samples
Download data: TXT
19.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
20.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL1261 GPL17021
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_674cc38530e6852f8a8765d6|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center