U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Global gene expression analyses of the Nr5a2 reprogrammed cells

(Submitter supplied) We used microarrays to detail the global programme of gene expression of ESCs, Nr5a2 reprogrammed iPSC lines and MEFs.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19021
ID:
200019021
2.

The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data
Series
Accession:
GSE19023
ID:
200019023
3.

Global gene expression analysis of OSKM / N2SKM- infected MEFs over time course

(Submitter supplied) We used microarrays to detail the global gene expression profiles of OSKM and N2OSKM-infected MEFs over a time course (3, 7, 11 dpi).
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19022
ID:
200019022
4.

Genome-wide mapping of Nr5a2 in mouse embryonic stem cells

(Submitter supplied) Nr5a2 (also known as liver receptor homolog-1, Lrh-1) has been shown to bind both the proximal enhancer and proximal promoter regions of Pou5f1 and regulate Pou5f1 in the epiblast stage of mouse embryonic development (Gu et al., 2005). Nr5a2-null embryos display a loss of Oct4 expression in the epiblasts (Gu et al., 2005) and die between E6.5 and E7.5 (Gu et al., 2005; Pare et al., 2004). To identify the targets of Nr5a2, we generated a stable ES cell-line that expresses HA-tagged Nr5a2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: BED, TXT
Series
Accession:
GSE19019
ID:
200019019
5.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
6.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL1261 GPL17021
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
7.

Expression data from three types of spermatogonial stem cells.

(Submitter supplied) Multipotent spermatogonial stem cells (mSSCs) derived from SSCs are a potential new source of individualized pluripotent cells in regenerate medicine such as ESCs. We hypothesized that the culture-induced reprogramming of SSCs was mediated by a mechanism different from that of iPS, and was due to up-regulation of specific pluripotency-related genes during cultivation. Through a comparative analysis of expression profile data, we try to find cell reprogramming candidate factors from mouse spermatogonial stem cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE74151
ID:
200074151
8.

RNA sequencing analysis in WT and Pc4-OE mESC lines.

(Submitter supplied) Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. SSCs express key OSKM reprogramming factors at some levels, and do not require ectopic expression of any gene for the acquisition of pluripotency during reprogramming to mSSCs. Therefore, we reasoned that additional factors are required to regulate SSC reprogramming. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: TXT
Series
Accession:
GSE74149
ID:
200074149
9.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
10.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
11.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
12.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
13.

Excluding Oct4 from Yamanaka cocktail unleashes the developmental potential of iPSCs

(Submitter supplied) Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL21493
86 Samples
Download data: XLSX
Series
Accession:
GSE137001
ID:
200137001
14.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL16791 GPL10558
95 Samples
Download data
Series
Accession:
GSE81900
ID:
200081900
15.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
84 Samples
Download data: PDF, TXT
Series
Accession:
GSE81899
ID:
200081899
16.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
11 Samples
Download data: TXT
Series
Accession:
GSE81891
ID:
200081891
17.

Expression analysis of stepwise induction of iPS cells

(Submitter supplied) We were able to achieve an initial stable intermediate phase by the transduction of Oct4, Klf4, and c-Myc. Furthermore, over-expression of Sox2 in these intermediate stage cells leads to final iPS cell phase. After examining the gene expression profiles from the initial to final iPS cell phases, we have identified Sox2 downstream genes important for iPS cell induction.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
16 Samples
Download data: TXT
Series
Accession:
GSE28197
ID:
200028197
18.

Function of Sox2 and Klf4 during SKM reprogramming

(Submitter supplied) Differentiated somatic cells can be reprogrammed into induced pluripotent stem cells by ectopic expression of transcription factors Oct4, Sox2, Klf4, and c-Myc, but the mechanisms are still to be dissected. The stoichiometry of factors influences the efficiency of induced pluripotent stem cells, and previous studies emphasized the requirement of high levels of overexpressed Oct4. In this study, we showed that, with appropriate stoichiometry achieved by polycistronic cassettes, Sox2 and Klf4 were sufficient to initiate and establish pluripotency in differentiated cells efficiently without Oct4 overexpression.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21626 GPL17021
33 Samples
Download data: NARROWPEAK, XLSX
Series
Accession:
GSE98280
ID:
200098280
19.

Gene expression and 5hmC/5mC state in pluripotent and TSKM-iPS induction cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL6246
15 Samples
Download data: BED, CEL
Series
Accession:
GSE39639
ID:
200039639
20.

Genome-wide maps of 5hmC/5mC state in pluripotent and (T-)iPS induction cells.

(Submitter supplied) We performed 5hmC/5mC DNA Immunoprecipitation followed high-throughput sequencing using the cell sample along the whole TSKM secondary reprogramming system. The TSKM 0D is the fibroblasts deried from TSKM-iPS mouse as the starting cells of the reprogramming.The intermediate cells is 3-days induced cells which are refered as TSKM 3D cells, and the final reprogrammed cells is the iPS cells with full pluripotency driven from this secondary system. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: BED
Series
Accession:
GSE39638
ID:
200039638
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_674caad530e6852f8a853bdb|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center