?
Quinone oxidoreductase (QOR) Quinone oxidoreductase (QOR) and 2-haloacrylate reductase. QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. 2-haloacrylate reductase, a member of this subgroup, catalyzes the NADPH-dependent reduction of a carbon-carbon double bond in organohalogen compounds. Although similar to QOR, Burkholderia 2-haloacrylate reductase does not act on the quinones 1,4-benzoquinone and 1,4-naphthoquinone. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction.
|