?
Peptidase family M2, angiotensin converting enzyme (ACE) Peptidase family M2 angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc-dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II, by removing two C-terminal amino acids. There are two forms of the enzyme in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by the same gene through transcription from alternative promoters. Somatic ACE has two tandem active sites with distinct catalytic properties, whereas germinal ACE, the function of which is largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been identified in humans that differs from ACE; it preferentially removes carboxy-terminal hydrophobic or basic amino acids and appears to be important in cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been found in a wide variety of species, including those that neither have a cardiovascular system nor synthesize angiotensin. ACE is well-known as a key part of the renin-angiotensin system that regulates blood pressure and ACE inhibitors are important for the treatment of hypertension.
|