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Summary

Clinical characteristics
For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of 
metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that 
result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during 
propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, 
hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by 
complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– 

enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-
cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the 
advent of newborn screening, common phenotypes included:

• Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, 
associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation 
of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype 
could rapidly progress to coma due to hyperammonemic encephalopathy.

• Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), 
in which symptoms occur in the first few months or years of life and are characterized by feeding 
problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic 
decompensation

• Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms 
to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild 
spastic paraparesis, and seizures.

In those individuals diagnosed by newborn screening and treated from an early age, there appears to be 
decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, 
and lower incidence of movement disorders and irreversible cerebral damage. However, secondary 
complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive 
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impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute 
metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, 
optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/
cancer, and renal cancer.

Diagnosis/testing
The diagnosis of isolated MMA is established in a proband by identification of biallelic pathogenic variants in 
MCEE, MMAA, MMAB, MMADHC, or MMUT or (in some instances) by significantly reduced activity of one of 
the following enzymes: methylmalonyl-CoA mutase, methylmalonyl-CoA mutase enzyme cofactor 5'-
deoxyadenosylcobalamin, or methylmalonyl-CoA epimerase. Because of its relatively high sensitivity, easier 
accessibility, and noninvasive nature, molecular genetic testing can obviate the need for enzymatic testing in 
most instances.

Management
Treatment of manifestations / Prevention of primary manifestations: When isolated MMA is suspected during the 
diagnostic evaluation due to elevated propionylcarnitine (C3) on a newborn blood spot, metabolic treatment 
should be initiated immediately, while the suspected diagnosis is being confirmed. Development and evaluation 
of treatment plans, training and education of affected individuals and their families, and avoidance of side effects 
of dietary treatment (i.e., malnutrition, growth failure) require a multidisciplinary approach by experienced 
subspecialists from a specialized metabolic center. The main principles of treatment are to provide supplemental 
vitamin B12 to those who are known to be vitamin B12 responsive; restrict natural protein, particularly of 
propiogenic amino acid precursors, while maintaining a high-calorie diet; address feeding difficulties, recurrent 
vomiting, and growth failure; provide supplemental carnitine to those with carnitine deficiency; reduce 
propionate production from gut flora; and provide emergency treatment during episodes of acute 
decompensation with the goal of averting catabolism and minimizing central nervous system injury. In those 
with significant metabolic instability and/or renal failure, liver and/or renal transplantation may be considered.

Prevention of secondary complications: MedicAlert® bracelets and up-to-date, easily accessed, detailed 
emergency treatment and presurgical protocols to facilitate care.

Surveillance: Regular evaluations by a metabolic specialist and metabolic dietician; screening laboratory testing, 
including plasma amino acids, plasma and urine MMA levels, serum acylcarnitine profile and free and total 
carnitine levels, blood chemistries, and complete blood count at least every six months to one year, or more 
frequently in infants or in those who are unstable or require frequent changes in dietary management; 
measurement of renal function at least annually or as clinically indicated; assessment for liver disease at least 
annually or as clinically indicated; assessment of developmental progress and for signs of movement disorder at 
each visit; ophthalmology evaluation to monitor for optic atrophy at least annually or as clinically indicated; 
audiology evaluation at least annually in childhood and adolescence or as clinically indicated.

Agents/circumstances to avoid: Fasting, stress, increased dietary protein, supplementation with the individual 
propiogenic amino acids valine and isoleucine, nephrotoxic medications or agents, and agents that prolong QTc 
in the EKG.

Evaluation of relatives at risk: For at-risk newborn sibs when prenatal testing was not performed: in parallel with 
newborn screening, measure serum methylmalonic acid, urine organic acids, plasma acylcarnitine profile, 
plasma amino acids, and serum B12; test for the familial isolated methylmalonic acidemia-causing pathogenic 
variants if biochemistry is abnormal.
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Pregnancy management for an affected mother: Monitor for complications including acute decompensation or 
hyperammonemia, deterioration of renal function, and obstetric complications including preeclampsia and 
preterm delivery.

Pregnancy management for an unaffected mother with an affected fetus: Oral and intramuscular vitamin B12 has 
been administered to women pregnant with a fetus with vitamin B12-responsive MMA, resulting in decreased 
maternal MMA urine output; however, further study of this treatment is needed.

Genetic counseling
All forms of isolated MMA are inherited in an autosomal recessive manner. If both parents are known to be 
heterozygous for an isolated MMA-causing pathogenic variant, each sib of an affected individual has at 
conception a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of 
inheriting neither of the familial pathogenic variants. Once the isolated MMA-causing pathogenic variants have 
been identified in an affected family member, molecular genetic carrier testing and prenatal/preimplantation 
genetic testing are possible.

GeneReview Scope
Table. Isolated Methylmalonic Acidemia/Aciduria: Included Phenotypes

Enzymatic Subtype Methylmalonic Acidemia Phenotype Associated
Gene

Complete deficiency of methylmalonyl-CoA mutase mut 0 Infantile/non-B12-responsive
MMUT

Partial deficiency of methylmalonyl-CoA mutase mut – Partially deficient or B12-responsive

Defect in the synthesis or transport of the methylmalonyl-CoA 
mutase cofactor, 5'-deoxyadenosyl-cobalamin

cblA Partially deficient or B12-responsive MMAA

cblB Infantile/non-B12-responsive or, rarely, 
partially deficient or B12-responsive MMAB

cblD-MMA Partially deficient or B12-responsive MMADHC

Deficient activity of methylmalonyl-CoA epimerase MCEE Methylmalonyl-CoA epimerase deficiency MCEE

Diagnosis
For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of 
metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that 
result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during 
propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, 
hypomethioninemia, or variations in other metabolites, such as malonic acid (Figure 1).

Suggestive Findings

Scenario 1: Abnormal Newborn Screening (NBS) Result
Newborn screening test. NBS for isolated methylmalonic acidemia is primarily based on quantification of the 
analyte propionylcarnitine (C3) on dried blood spots.

Elevated C3 values above the cutoff reported by the screening laboratory are considered positive and require 
follow-up biochemical testing (see also the ACMG ACT Sheet).

• In the US, individual state NBS programs determine cutoffs based on analytic and other considerations, 
under the guidance of the CDC Newborn Screening Quality Assurance Program (NSQAP) and 
Association of Public Health Laboratories (APHL) [McHugh et al 2011, Held et al 2022].
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Figure 1. Major pathway of the conversion of propionyl-CoA into succinyl-CoA. The biotin-dependent enzyme propionyl-CoA 
carboxylase converts propionyl-CoA into D-methylmalonyl-CoA, which is then racemized into L-methylmalonyl-CoA and isomerized 
into succinyl-CoA, a Krebs cycle intermediate. The L-methylmalonyl-CoA mutase reaction requires 5'-deoxyadenosylcobalamin, an 
activated form of vitamin B12. The pathway of cellular processing of cobalamin (reduction from Cbl+3 to Cbl+2) and subsequently 
formation of adenosyl- (AdoCbl) and methylcobalamin (MeCbl) is depicted. Adenosyl-cobalamin is the cofactor of the 
methylmalonyl-CoA mutase reaction; methylcobalamin is the cofactor of the methionine synthase reaction.
The color-coded boxes around the cobalamin-processing enzymes indicate their role in causing: (1) methylmalonyl-CoA mutase or 
isolated AdoCbl deficiency and associated increase in serum methylmalonic acid [sMMA] (blue); (2) isolated MeCbl deficiency and 
hyperhomocysteinemia (green); (3) both cofactor deficiencies causing elevations in MMA and homocysteine (purple). Note: The light 
blue striped boxes indicate the enzymes (and the genes encoding them) that are deficient in different disorders in which methylmalonic 
acidemia occurs: epimerase deficiency (MCEE) and succinate-CoA ligase deficiency (SUCLA2/SUCLG1), combined malonic and 
methylmalonic acidemia (ACSF3, ZBTB11), and methylmalonyl-semialdehyde dehydrogenase deficiency (ALDH6A1). The light purple 
striped box indicates cblX deficiency (HCFC1), the only X-linked disorder in this pathway and rare transcription factors (ZNF143, 
THAP11) or neighboring genes (PRDX1) associated with cblC deficiency or epi-cblC. See Disorders of Intracellular Cobalamin 
Metabolism.
MMA = methylmalonic acid; Cbl = cobalamin; Cbl+3 = oxidized cobalamin, Cbl+2 = reduced cobalamin; AdoCbl = 5'-
deoxyadenosylcobalamin; MeCbl = methylcobalamin; TC = transcobalamin; TCblR = transcobalamin receptor.
The genes (and the enzymatic subtypes) associated with isolated methylmalonic acidemia included in this GeneReview are:
MMUT (mut0, mut–)
MMAA (cblA)
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• Since propionylcarnitine is one of the analytes most frequently responsible for false positive results, ratios 
including C3/C2, C3/C0, C3/C16, C3/glycine, or C3/methionine are recommended in combination with 
high blood concentration of C3 as decision criteria for "positive" testing in newborn screening 
acylcarnitine analysis by MS/MS for methylmalonic acidemia and propionic acidemia [Gavrilov et al 
2020].

• Additional biomarkers such as C16:1OH (3-hydroxypalmitoleolyl-carnitine) or, more accurately, C17 
(heptadecanoylcarnitine) have been suggested to improve the sensitivity of the first-tier newborn 
screening test [McHugh et al 2011, Malvagia et al 2015].

• Amino acid analysis of the dried blood spot will show normal methionine and elevated C3/methionine 
ratio.

• Precision newborn screening and avoidance of false positive results can be further improved with the 
utilization of the Collaborative Laboratory Integrated Reports software [Gavrilov et al 2020].

The following medical interventions need to begin immediately on receipt of an abnormal NBS result while 
additional testing is performed to determine whether this is a true positive NBS result and to establish the 
diagnosis of isolated MMA definitively (see Management):

• Prompt evaluation for prevention or treatment of possible hyperammonemia and metabolic ketoacidosis
• Daily intramuscular vitamin B12 administration (Hydroxocobalamin is preferred over cyanocobalamin, 

especially in individuals with cobalamin C deficiency.)
• Initiation of a low-protein diet
• Carnitine supplementation

Testing to consider after a positive NBS. A positive C3 screening result is followed by testing for methylmalonic 
acid, 2-methylcitrate, and total homocysteine in the dried blood spot to differentiate isolated MMA from 
propionic acidemia and defects resulting in combined methylmalonic acidemia and homocystinuria [Turgeon et 
al 2010, Weiss et al 2020, Pajares et al 2021].

Follow-up biochemical testing after an abnormal NBS typically demonstrates:

• Elevated plasma methylmalonic acid (MMA) level
• Elevated levels of urine MMA and the presence of 3-hydroxypropionate, 2-methylcitrate, and tiglylglycine 

on urine organic acids
• Elevated concentrations of glycine and possibly alanine with normal methionine on plasma amino acids
• Elevated plasma concentration of propionylcarnitine (C3) and variable elevations in C4-dicarboxylic or 

methylmalonic/succinylcarnitine (C4DC) on plasma acylcarnitine profile
• Elevated plasma ammonia, metabolic ketoacidosis, pancytopenia, lactic acidosis, hypoglycemia (in some 

cases)
• Normal serum B12 and plasma homocysteine

Note: (1) Although plasma and/or urine methylmalonic acid concentration can be precisely quantitated (see 
Table 1), this is generally not needed immediately for diagnostic purposes. (2) If MMA is confirmed, further 

MMAB (cblB)
MMADHC (cblD-MMA)
MCEE
Isolated methylmalonic acidemia caused by mutation of SUCLA2 and SUCLG1 is discussed in SUCLA2-Related Mitochondrial DNA 
Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria and SUCLG1-Related Mitochondrial DNA Depletion 
Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria, respectively.
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biochemical testing of plasma homocysteine and serum vitamin B12 (in both the newborn and the mother) 
helps further differentiate the cause of MMA (see Figure 2, left two columns).

If follow-up biochemical testing supports the likelihood of isolated methylmalonic acidemia, additional testing is 
required to establish the diagnosis (see Establishing the Diagnosis).

Scenario 2: Symptomatic Individual
A symptomatic individual may present with clinical findings associated with an attenuated MMA phenotype or 
untreated infantile-onset MMA (see Note). Onset of symptoms can range from the first days of life to adulthood 
[Kölker et al 2015a].

Note: Infantile-onset MMA may be untreated for any of the following reasons: NBS was not performed; NBS 
yielded a false negative result; caregivers were not adherent to recommended treatment following a positive NBS 
result.

Supportive – but nonspecific – clinical findings, brain MRI findings, and preliminary laboratory findings can 
include the following.

Clinical findings

In neonates:

• Lethargy
• Vomiting
• Hypotonia
• Hypothermia
• Respiratory distress
• Encephalopathy, coma
• Sepsis-like illness

In older infants and children:

• Failure to thrive / short stature
• Protein aversion
• Hypotonia
• Intellectual disability
• Acute and chronic neurologic symptoms including seizures and abnormal movements (choreoathetosis, 

dystonia, spasticity)
• Acute and chronic renal manifestations (dehydration, renal tubular acidosis, acute kidney injury)

Brain MRI findings include evidence of basal ganglia injury, specific to the globus pallidus [Baker et al 2015], 
typically in older infants and children.

Preliminary laboratory findings

Acutely:

• Severe ketoacidosis and lactic acidosis (may first present as a catastrophic/lethal ketoacidosis following an 
intercurrent illness)

• Hyperammonemia
• Anemia, neutropenia, and/or thrombocytopenia on complete blood count

In older untreated infants and children: isolated renal tubular acidosis or chronic renal failure
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Figure 2. An algorithm of conditions to be considered in the differential diagnosis of elevated serum or urine methylmalonic acid 
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Establishing the Diagnosis
The diagnosis of isolated MMA is established in a proband by identification of biallelic pathogenic variants in 
one of the genes listed in Table 2 on molecular genetic testing or – in some instances – by significantly reduced 
activity of the enzymes listed below and in Table 1. Because of its relatively high sensitivity, easier accessibility, 
and noninvasive nature, molecular genetic testing can obviate the need for enzymatic testing, and is thus 
increasingly the preferred confirmatory test for isolated MMA.

Isolated MMA is caused by any ONE of the following:

• Complete (mut0 enzymatic subtype) or partial (mut–) deficiency of the enzyme methylmalonyl-CoA 
mutase, encoded by MMUT

• Diminished synthesis of the methylmalonyl-CoA mutase enzyme cofactor 5'-deoxyadenosylcobalamin, 
associated with cblA, cblB, or cblD-MMA complementation groups caused by biallelic pathogenic variants 
in MMAA, MMAB, or MMADHC, respectively

• Deficient activity of methylmalonyl-coenzyme A epimerase encoded by MCEE

Table 1. Methylmalonic Acid Concentration in Phenotypes and Enzymatic Subtypes of Methylmalonic Acidemia

Methylmalonic Acidemia
Phenotype / Enzymatic
Subtype 1

Methylmalonic Acid Concentration

Urine Blood

Infantile/non-B12-responsive 2 /
mut0, mut–, cblB 1,000-10,000 mmol/mol Cr

• 100-1,000 µmol/L (if eGFR >50 
mL/min/1.73 m2)

• 1,000-10,000 µmol/L in those w/
advanced renal disease

B12-responsive 2 /
cblA, cblD-MMA, cblB, mut– (rare) Tens - hundreds mmol/mol Cr 5-100 µmol/L

MCEE deficiency 3 100-6,800 mmol/mol Cr 5-180 µmol/L

detected either during the follow up of an increased propionylcarnitine (C3) on newborn screening or following a positive urine 
organic acid screen in a symptomatic individual. The algorithm includes disorders that can present after the newborn period.
AC = acylcarnitine profile; CBC = complete blood count; Cbl = cobalamin; MMA = methylmalonic acid; Mut = mutase; OA = organic 
acids; PA = propionic acid; TC-II = transcobalamin II
Footnotes:
1. Succinate ligase deficiency (caused by biallelic pathogenic variants in SUCLA2 or SUCLG1) presents with lactic acidosis; excess 2-
methylcitric, 3-hydroxyproprionic acid, and 3-hydroxyisovaleric acid in the urine; and excess C3-propionylcarnitine and C4-
dicarboxylic carnitine (C4DC) in the blood and/or urine.
2. CMAMMA presents with normal propionylcarnitine (C3) in the plasma acylcarnitine profile and elevated methylmalonic and 
malonic acid in the plasma or urine. CMAMMA can be caused by biallelic pathogenic variants in ACSF3 or ZBTB11.
3. Methylmalonyl-semialdehyde-dehydrogenase deficiency (MMASDH) and other ill-defined syndromes should be considered (see 
Differential Diagnosis).
4. B12 deficiency syndromes include intrinsic factor deficiency, Imerslund-Gräsbeck syndrome, and others. cblF and cblJ can have low 
serum B12 concentration due to abnormal gastrointestinal absorption.
5. In rare instances metabolites can be normal in affected individuals.
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Table 1. continued from previous page.

Methylmalonic Acidemia
Phenotype / Enzymatic
Subtype 1

Methylmalonic Acid Concentration

Urine Blood

Normal 4 <4 mmol/mol Cr <0.27 µmol/L

Cr = creatinine; eGFR = estimated glomerular filtration rate; MCEE = methylmalonyl-coenzyme A epimerase
1. Biochemical parameters and clinical phenotype are not always concordant, partly because renal function can influence plasma MMA 
concentration [Kruszka et al 2013, Manoli et al 2013]. Patients in kidney failure show massive elevations in plasma MMA that can 
exceed 5,000 µmol/L.
2. Approximate numbers, representing the author's experience with >150 individuals with the B12-responsive and non-B12-responsive 
types as well as data from Fowler et al [2008]
3. Bikker et al [2006], Dobson et al [2006], Gradinger et al [2007], Heuberger et al [2019]
4. Normal values have not been exclusively derived from children or neonates. Some laboratories report urine MMA concentrations in 
mg/g/Cr (normal: <3 mg/g/Cr) and serum concentrations in nmol/L (normal: <271 nmol/L). The molecular weight of MMA is 118 g/
mol.

Molecular genetic testing (see Table 2) can be used to establish the diagnosis of isolated MMA by identifying 
biallelic pathogenic variants in one of the genes listed in Table 2 and confirming carrier status in the parents.

Molecular Genetic Testing Approaches
Scenario 1: Abnormal newborn screening (NBS) result. When NBS results and other laboratory findings 
suggest the diagnosis of isolated MMA, molecular genetic testing approaches include use of a multigene panel.

A methylmalonic acidemia multigene panel that includes the genes listed in Table 2 and other genes of interest 
(see Differential Diagnosis) is most likely to identify the genetic cause of the condition while limiting 
identification of variants of uncertain significance and pathogenic variants in genes that do not explain the 
underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing 
used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include 
genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options 
may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that 
includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/
duplication analysis, and/or other non-sequencing-based tests.

For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic 
tests can be found here.

Scenario 2: Symptomatic individual. For a symptomatic individual who has findings associated with attenuated 
isolated MMA OR untreated infantile-onset isolated MMA (see Suggestive Findings, Scenario 2, Note), a 
methylmalonic acidemia multigene panel should be pursued, as detailed above. When a molecular diagnosis is 
not reached by panel testing, comprehensive genomic testing (which does not require the clinician to 
determine which gene[s] are likely involved) is an option. Exome sequencing is most commonly used; genome 
sequencing is also possible.

For an introduction to comprehensive genomic testing click here. More detailed information for clinicians 
ordering genomic testing can be found here.
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Table 2. Molecular Genetic Testing Used in Isolated Methylmalonic Acidemia

Gene 1, 2
Proportion of Isolated MMA 
Attributed to Mutation of 
Gene 3

Proportion of Pathogenic Variants 4 Detected by Method

Sequence analysis 5 Gene-targeted deletion/
duplication analysis 6

MCEE Rare 25 probands/families 7 Unknown, none reported 8

MMAA 25% 97% 9 Unknown, one large deletion 
reported 8, 10

MMAB 12% 98% 11 Unknown, none reported 8

MMADHC Rare 9 probands/families 12 Unknown, none reported 8

MMUT
60% (75%-78% mut0 enzymatic 
subtype, 20%-22% mut– 

enzymatic subtype)
96% 13, 14 ~1% 8

Unknown 15 Rare NA

NA = not applicable
1. Genes are listed in alphabetic order.
2. See Table A. Genes and Databases for chromosome locus and protein.
3. Based on Worgan et al [2006], Hörster et al [2007], Hörster et al [2009], Forny et al [2016], Forny et al [2021], Hörster et al [2021]. 
Depending on the definition of B12 responsiveness these percentages vary in different reports and populations [Yu et al 2021].
4. See Molecular Genetics for information on allelic variants detected in this gene.
5. Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants 
may include missense, nonsense, and splice site variants and small intragenic deletions/insertions; typically, exon or whole-gene 
deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.
6. Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative 
PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect 
single-exon deletions or duplications.
7. Gradinger et al [2007], Heuberger et al [2019]
8. Data derived from the subscription-based professional view of Human Gene Mutation Database [Stenson et al 2020]
9. Lerner-Ellis et al [2004], Plessl et al [2017]
10. Nizon et al [2013]
11. Lerner-Ellis et al [2006], Forny et al [2016], Forny et al [2021]
12. Coelho et al [2008], Stucki et al [2012], Froese et al [2015], Wang et al [2018]
13. Worgan et al [2006], Forny et al [2016]
14. For individuals of Hispanic descent, targeted exon 2 analysis for the MMUT c.322C>T pathogenic variant may be considered (see 
Molecular Genetics).
15. Some individuals with isolated MMA remain undiagnosed despite extensive genome and RNA sequencing, suggesting that 
additional genetic causes of isolated or combined subtypes of MMA may be identified with future research [Abdrabo et al 2020].

Responsiveness to Vitamin B12
In vivo responsiveness to vitamin B12 should be determined in all affected individuals, following the proposed 
protocol by Fowler et al [2008], according to the E-IMD guidelines [Baumgartner et al 2014, Forny et al 2021].

• When stable, affected individuals can be given 1.0 mg of hydroxocobalamin (OH-Cbl) (see Note) 
intramuscularly every day for three to five days or longer, followed by assessment of production of MMA 
and related metabolites (3-OH-propionic, 2-methylcitrate) by serial urine organic acid analyses and/or 
measurement of plasma concentrations of MMA, propionylcarnitine, and homocysteine. At least three 
samples on different days should be obtained at baseline and over the course of the following one to two 
weeks and mean pre- and post-concentrations compared. Protein and energy intake should be specified.

• A significant (>50%) reduction in plasma or urine mean methylmalonic acid concentration(s) is 
considered indicative of responsiveness [Fowler et al 2008].
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• In vivo response was reported in all individuals with cblA and only rare individuals with cblB, who have 
the C terminal pathogenic variants c.700C>T (p.Gln234Ter) or c.656_659del (p.Tyr219SerfsTer4) in 
MMAB [Hörster et al 2007, Forny et al 2021, Hörster et al 2021].

Note: Hydroxocobalamin (not cyanocobalamin) is the preferred preparation for treatment of methylmalonic 
acidemia; if the in vivo response to intramuscular hydroxocobalamin is questionable or borderline, vitamin B12 
administration should be continued and a skin biopsy obtained to isolate fibroblasts to assess B12 responsiveness 
by 14C propionate incorporation in vitro.

Enzymatic Testing
Cellular biochemical testing on skin fibroblasts was historically the gold standard for determining the MMA 
subtype and B12 responsiveness in vitro, although molecular genetic testing is now more widely used as the first 
diagnostic step. Enzymatic testing is useful when molecular genetic testing fails to provide a firm diagnosis to 
guide management. While the in vitro cellular assay can provide some insight into responsiveness to exogenous 
administration of cobalamin, it is not always predictive of the in vivo response.

See Therapies Under Investigation for information about a surrogate biomarker of disease severity that is 
currently being evaluated.

Clinical Characteristics

Clinical Description
The phenotypes of isolated methylmalonic acidemia (MMA) described below that are associated with the 
enzymatic subtypes mut0, mut–, cblA, cblB, and cblD-MMA share clinical presentations and a natural history 
characterized by periods of relative health and intermittent metabolic decompensation, usually associated with 
intercurrent infections and stress [Zwickler et al 2012]. Each such decompensation can be life threatening. Table 
3 reviews the phenotypes, causative genes, enzymatic subtypes, and clinical correlations that will be discussed 
further in this section.

Table 3. Phenotype Correlations by Gene and Enzymatic Subtype of Isolated Methylmalonic Acidemia

Methylmalonic Acidemia 
Phenotype Gene Enzymatic Subtype Clinical Correlation

Infantile / non-B12-
responsive 1

MMUT mut 0

• Most common & severe form, typically presenting in 
infancy

• Higher rate of mortality & neurologic & other multisystem 
complications than in those w/mut– & cblA subtypes

• Renal disease may manifest in childhood in ~43%-60%, w/
median age of onset 6-11 yrs. 2

MMUT mut –

• Onset may occur later, in 1st few mos or yrs of life.
• Symptoms often incl feeding problems, failure to thrive, 

hypotonia, & DD.
• Catastrophic decompensation can occur when diagnosis is 

delayed, incl injury in basal ganglia → movement disorder.
• Some persons have isolated renal tubular acidosis or chronic 

renal failure as primary finding.
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Table 3. continued from previous page.

Methylmalonic Acidemia 
Phenotype Gene Enzymatic Subtype Clinical Correlation

MMAB cblB

• Most affected persons have phenotype that resembles mut0, 
although certain pathogenic variants may be assoc w/milder 
phenotype.

• Higher rate of mortality & neurologic & other multisystem 
complications than in those w/mut– & cblA sybtypes

• Chronic renal failure occurs in ~66% & is less frequent than 
in those w/cblA subtype.

B12-responsive 3

MMAA cblA

If diagnosed early & consistently treated w/injectable B12 4:

• Milder disease course
• Normal life expectancy
• Slower decline in renal function w/≈9%-12% developing 

chronic renal failure 5
• Better neurocognitive outcomes than in mut0/mut– & cblB 

subtypes

If not adherent to diet & injectable B12 therapy: at risk for 
significant neurologic & multiorgan complications 6

MMADHC 7 cblD-MMA Metabolic acidosis, respiratory distress, hyperammonemia, & 
neurologic symptoms

MMAB cblB

• Only rarely is this subtype responsive to injectable B12 
therapy.

• May present w/isolated renal tubular acidosis or chronic 
renal failure

MMUT mut – See Infantile/non-B12-responsive; this phenotype is rarely B12-
responsive.

MCEE deficiency MCEE MCEE

• In general, milder features ranging from no symptoms to 
severe metabolic acidosis.

• Not responsive to injectable B12 therapy
• A rare cause of persistent moderate MMA

DD = developmental delay; MCEE = methylmalonyl-coenzyme A epimerase
1. The most common phenotype, which typically presents during infancy
2. Cosson et al [2009], Kruszka et al [2013], Dao et al [2021]
3. Sometimes referred to as partial deficiency
4. Hörster et al [2021], Manoli et al [2021]
5. Hörster et al [2021], Marelli et al [2022]
6. Including optic nerve atrophy, basal ganglia injury, and multiorgan failure [Valayannopoulos et al 2009]
7. See also Genetically Related Disorders for other phenotypes associated with mutation of this gene.

Effect of Newborn Screening
Decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental 
outcome, and lower incidence of movement disorders and irreversible cerebral damage were recorded in affected 
individuals identified through expanded NBS, though a number of infants with the mut0 enzymatic subtype 
present clinically before the NBS results become available [Leonard et al 2003, Dionisi-Vici et al 2006, Heringer 
et al 2016]. Limited observations in sibs with the cblA enzymatic subtype suggest that the IQs of the individuals 
treated from the newborn period were significantly higher than those of their older affected sibs who were 
diagnosed after the onset of symptoms [Hörster et al 2007].
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Common Phenotypes and Associated Features
As described prior to newborn screening (NBS) availability, the common phenotypes and associated features of 
isolated MMA included the following.

Infantile/non-B12-responsive phenotype (mut0 enzymatic subtype, cblB). The catastrophic neonatal 
presentation of isolated MMA can result in death despite aggressive intervention. Infants with the B12-
responsive mut– enzymatic subtype or cblA can also present with an acute neonatal crisis.

• The most common phenotype of isolated MMA presents during infancy. Infants are normal at birth but 
develop lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing 
feeds.

• This can rapidly progress to coma due to hyperammonemic encephalopathy, if untreated.
• Laboratory findings typically show a severe, high anion-gap metabolic acidosis, ketosis and ketonuria 

(highly abnormal in neonates and strongly suggestive of an organic aciduria), hyperammonemia, and 
hyperglycinemia [Kölker et al 2015a].

• Dialysis may be needed especially if hyperammonemia is significant and persistent.
• Thrombocytopenia and neutropenia, suggestive of neonatal sepsis, can be seen.

Partially deficient or B12-responsive phenotypes (mut–, cblA, cblB [rare], cblD-MMA). This intermediate 
phenotype of isolated methylmalonic acidemia can occur in the first few months or years of life.

• Affected infants can exhibit feeding problems (typically anorexia and vomiting), failure to thrive, 
hypotonia, and developmental delay.

• Some have protein aversion and/or clinical symptoms of vomiting and lethargy after protein intake.
• Until the diagnosis is established and treatment initiated, infants are at risk for a catastrophic 

decompensation (like that in neonates) [Lerner-Ellis et al 2006, Hörster et al 2007].
• During such an episode of metabolic decompensation, the child may die despite intensive intervention if 

prompt treatment specific for MMA (see Treatment of Manifestations) is not instituted and the symptoms 
are misdiagnosed (as, e.g., diabetic ketoacidosis) [Ciani et al 2000].

• Before the availability of NBS, or in cases that are false negative on NBS due to borderline C3 elevations, 
infants with the cblA or mut– subtypes would present with a devastating injury in the basal ganglia in the 
context of acute metabolic crisis / encephalopathy (more specifically lacunar infarcts in the globus 
pallidus) resulting in a debilitating movement disorder [Korf et al 1986, Heidenreich et al 1988].

• Individuals with partial enzymatic deficiency (mut–), cblA, or cblB can also present with isolated renal 
tubular acidosis or chronic renal failure [Dudley et al 1998, Coman et al 2006].

Methylmalonyl-coenzyme A epimerase (MCEE) deficiency. Findings in infants/children with biallelic 
pathogenic variants in MCEE have ranged from complete absence of symptoms to severe metabolic acidosis with 
increased MMA and 2-methylcitrate and ketones in the urine at initial presentation [Dobson et al 2006, 
Gradinger et al 2007, Heuberger et al 2019].

• Screening of a large cohort of individuals with undefined MMA identified ten individuals with MCEE 
deficiency with symptoms including metabolic ketoacidosis, hypoglycemia, seizures, developmental delay, 
and spasticity. Cardiomyopathy was reported in a single individual, with a similarly affected sib with 
biochemical but no clinical findings [Heuberger et al 2019].

• Individuals with MCEE deficiency were not responsive to B12 supplementation in vitro or in vivo and 
urine MMA concentrations ranged between 100 and 600 mmol/mol creatinine (normal: 0.3-1.1 mmol/
mol) [Heuberger et al 2019].

• A 78-year-old individual with Parkinson disease, dementia, and stroke was found to have MCEE biallelic 
pathogenic variants c.139C>T (p.Arg47Ter) and c.419del (p.Lys140ArgfsTer6), associated with 
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methylmalonic acidemia and increased plasma C3; he was not responsive to high-dose hydroxocobalamin 
[Andréasson et al 2019].

Secondary Complications
Secondary complications can be observed in any enzymatic subtype but may be dependent on the specific 
subtype and degree of metabolic control and adherence (see Table 3). Despite increased knowledge about 
isolated MMA and possibly earlier symptomatic diagnosis, isolated MMA continues to be associated with 
substantial morbidity and mortality [de Baulny et al 2005, Dionisi-Vici et al 2006, Kölker et al 2015b, Tuncel et al 
2018] that correlates with the underlying defect [Hörster et al 2007, Hörster et al 2021]. Individuals with the 
mut0 and cblB subtypes have a higher rate of mortality and neurologic and other multisystem complications 
than those with the mut– and cblA subtypes. Multiorgan complications associated with secondary mitochondrial 
dysfunction accumulate with age and were shown to be associated with a higher total protein intake and 
imbalanced special metabolic food prescription [Manoli et al 2016b, Molema et al 2018, Haijes et al 2019a, 
Molema et al 2021a].

Therefore, primary and secondary biomarkers are important for monitoring affected individuals and supporting 
efficacy in therapeutic clinical trials [Longo et al 2022] (see Therapies Under Investigation and Molecular 
Genetics). As an example, plasma fibroblast growth factor 21 (FGF21) was shown to correlate with disease 
severity and long-term complications in different cohorts of affected individuals [Manoli et al 2018, Molema et al 
2018, Manoli et al 2021].

The major secondary complications include the following.

Intellectual disability. Intellectual disability may or may not be present even in those with severe disease.

• In one study about 50% of individuals with mut0 subtype, 85% with mut–, 48% with cblA, and 70% with 
cblB had an IQ above 90 [Hörster et al 2007].

• In a natural history study, the mean FSIQ of all individuals with isolated MMA (n=37) was 85.0 ± 20.68, 
which is in the low-average range (80≤IQ≤89) [O'Shea et al 2012].
⚬ Individuals with cblA (n=7), cblB (n=6), and mut diagnosed prenatally or by NBS (n=3) had mean 

FSIQs in the average range (90≤IQ≤109).
⚬ The age of disease onset, the presence of severe hyperammonemia at diagnosis, and a history of 

seizures were associated with more severe impairments.

Tubulointerstitial nephritis with progressive impairment of renal function. All individuals with isolated 
MMA, even those who are mildly affected or who have received a liver allograft [Noone et al 2019], are at risk of 
developing renal insufficiency [Cosson et al 2009, Kruszka et al 2013, Manoli et al 2013, Morath et al 2013, Dao 
et al 2021, Hörster et al 2021], which can progress to end-stage renal disease requiring kidney transplantation 
(see Table 3).

• Cystatin-C levels and age-appropriate equations to calculate estimated glomerular filtration rate (GFR) – 
or preferably, measurement of GFR by iohexol clearance or other methods – should be used for clinical 
monitoring, due to the fact that creatinine is a late marker of renal dysfunction in individuals with low 
muscle mass, as is seen in isolated MMA (see Surveillance). This will allow for earlier referral to 
nephrology services and initiation of renoprotective measures – including, importantly, blood pressure 
control.

• Renal tubular dysfunction presenting as a decrease in urine concentrating ability and acidification, 
hyporeninemic hypoaldosteronism, tubular acidosis type 4, and hyperkalemia have been reported in a 
number of affected individuals [Dao et al 2021].
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• Secondary mitochondrial dysfunction rather than direct nephrotoxicity of methylmalonic acid is 
hypothesized as the cause for renal disease [Atkuri et al 2009, Mc Guire et al 2009, Manoli et al 2013, 
Zsengellér et al 2014].

• Comorbidities of renal disease including anemia, acidosis, hyperuricemia, secondary 
hyperparathyroidism, osteopenia/osteoporosis, hypertension, and short stature should be monitored 
regularly by a multidisciplinary care team (see Surveillance).

Neurologic findings. Some individuals develop a "metabolic stroke" or bilateral lacunar infarction of the basal 
ganglia during acute metabolic decompensation, which can produce an incapacitating movement disorder.

• Individuals who have not undergone solid organ transplant
⚬ The reported incidence in different cohorts is 17%-30% [Baumgarter & Viardot 1995, Hörster et al 

2007]. Distinct segments of the globus pallidus (globus pallidus externa) and sometimes the 
substantia nigra in the cerebral peduncles are affected, suggesting a non-uniform, cell-specific 
susceptibility as the underlying mechanism of injury [Baker et al 2015].

⚬ Delayed myelination, incomplete opercularization, subcortical white matter changes, cortical 
atrophy, and brain stem and cerebellar changes have also been described [Hörster et al 2007, 
Harting et al 2008, Radmanesh et al 2008].

• Individuals who have undergone liver and/or kidney transplantation
⚬ After transplant, individuals can still develop acute lesions of the basal ganglia without overt 

metabolic decompensation, suggesting that the enzyme deficiency in the brain remains unchanged 
and trapping of toxic metabolites in the central nervous system compartment can lead to injury 
despite other systemic benefits of the transplantation. It is therefore important to continue dietary 
restrictions and metabolic care [Chakrapani et al 2002, Kaplan et al 2006, Vernon et al 2014].

⚬ Neurotoxicity from anti-rejection medications, especially calcineurin inhibitors (e.g., tacrolimus), 
has been observed in individuals with MMA who have undergone solid organ transplantation. 
These include tremors, seizures, and posterior reversible encephalopathy syndrome [Molema et al 
2020]. This is important to consider because symptoms can improve with dose reduction/
discontinuation of calcineurin inhibitors.

Pancreatitis. Acute pancreatitis is a well-recognized complication of isolated MMA, with a reported incidence of 
10%-27% in different cohorts [Marquard et al 2011, Forny et al 2018, Hwang et al 2021]. It can occur acutely or 
chronically. Several affected individuals have recurrent pancreatitis episodes. Pancreatitis may be 
underrecognized because it can manifest nonspecifically with vomiting and abdominal pain. It is therefore 
recommended that acutely ill individuals with MMA undergo testing for lipase and amylase (see Management).

Growth failure is frequent and multifactorial. It is the result of severe chronic illness and perhaps relative 
protein malnutrition that is complicated further by chronic renal failure. Many infants are more than three 
standard deviations below the mean for both length and weight [Manoli et al 2016b].

• Rarely, affected individuals have documented growth hormone (GH) deficiency, for which GH therapy has 
been used.

• GH therapy has also been used for its anabolic effects or as part of the management of chronic kidney 
disease [Al-Owain et al 2004, Kao et al 2009, Baumgartner et al 2014].

• Response to GH therapy may vary; careful monitoring of the diet and metabolic parameters is necessary 
(see Management).

Functional immune impairment results in an increased susceptibility to severe infections, particularly by 
fungal and gram-negative organisms. Defects in both humoral and cellular immunity have been documented 
[Alizadeh Najjarbashi et al 2015, Harrington et al 2016, Altun et al 2022].
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Bone marrow failure. During episodes of metabolic decompensation affected individuals can exhibit 
pancytopenia, with bone marrow hypoplasia and/or dysplasia that most frequently reverts to normal with 
supportive care [Bakshi et al 2018]. Anemia due to chronic disease or iron deficiency or secondary to progressive 
renal failure is common. Essential amino acid deficiencies can be a contributing factor in some individuals 
[Kölker et al 2015b].

Optic nerve atrophy. Late-onset optic atrophy associated with acute or subacute visual loss, resembling the 
presentation of the mitochondrial disorder Leber hereditary optic neuropathy (LHON), has been reported in 
7%-11% of individuals with isolated MMA [Williams et al 2009, Pinar-Sueiro et al 2010, Traber et al 2011, 
Martinez Alvarez et al 2016] and up to 52% in a cohort of affected Middle Eastern individuals [Al-Owain et al 
2019]. Response to antioxidant therapies (idebenone, coenzyme Q10, and vitamin E) has been variable.

Cardiac complications

• Arrhythmias or cardiomyopathy (dilated or hypertrophic) have been reported in 10%-20% of individuals 
with isolated MMA, primarily mut0 or mut- (and cblB subtypes, as well as in the B12-responsive cblA 
subtype) [Prada et al 2011, Chao et al 2012, Hörster et al 2021].

• Arterial hypertension associated with chronic kidney disease is common and necessitates monitoring and 
early intervention for renoprotection [Kölker et al 2015b, Park et al 2020].

• Additional cardiometabolic risk factors, including obesity, insulin resistance, and hyperlipidemia, need to 
be monitored regularly to optimize cardiovascular health [Gancheva et al 2020].

Liver steatosis, fibrosis, and cancer. Progressive liver toxicity associated with elevated transaminases (including 
GGT) and mild elevations of alpha-fetoprotein (AFP) has been observed in a number of individuals with 
isolated MMA. Liver ultrasound can show hepatomegaly and/or hyperechoic liver texture. Liver biopsies in three 
individuals showed steatosis, fibrosis, and (rarely) cirrhosis as early as age eight years [Imbard et al 2018].

• Liver neoplasms have been reported in five individuals, all severely affected (4 with mut0 subtype and 1 
with cblB) [Cosson et al 2008, Chan et al 2015, Forny et al 2019]:
⚬ Three children had hepatoblastoma (diagnosed at 4 months, 19 months, and 11 years of age).
⚬ Two adults had hepatocellular carcinoma (diagnosed at age 22 years and 31 years).

• Periodic screening (typically at least annually or as clinically indicated) including liver transaminases, 
serum AFP level, and liver ultrasound is recommended in individuals with severe MMA subtypes (see 
Surveillance).

Renal cancer. A single case of a pediatric renal cell carcinoma has been reported in a female age six years with 
complete MMUT deficiency (mut0), complicated by renal tubular acidosis, Stage 4 chronic renal disease, and 
hypercalcemia with increasing parathyroid hormone-related protein. Inactivating somatic variants in TSC2 were 
identified in the tumor tissue [Potter et al 2017].

Survival in isolated methylmalonic acidemia has improved over time [Matsui et al 1983, van der Meer et al 1994, 
Baumgarter & Viardot 1995, Nicolaides et al 1998, Kölker et al 2015a]. Five-year survival improved from 33% in 
the 1970s to more than 80% in the 1990s.

• Overall mortality was about 50% for those with the mut0 enzymatic subtype (median age of death: 2 years) 
and for the cblB enzymatic subtype (median age of death: 2.9 years) compared to 40% for the mut– 

enzymatic subtype (median age of death: 4.5 years) and only about 5% for the cblA enzymatic subtype (1 
death at age 14 days) [Hörster et al 2007].

• More recent reports from the European Registry and Network for Intoxication Type Metabolic Diseases 
notes a 6% mortality for mut MMA (combined mut- and mut0 populations) and a 100% survival for those 
with the B12-responsive cblA subtype of MMA [Hörster et al 2021].
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• Improvements likely reflect changes in diagnosis and NBS, improved treatment guidelines for acute crises/
hyperammonemia, optimized nutrition with gastrostomy tube feeding, access to intensive care, 
hemodialysis and N-carbamylglutamate for the management of hyperammonemia, as well as earlier 
referral and better morbidity and mortality associated with solid organ transplantation.

Genotype-Phenotype Correlations
Precise genotype-phenotype correlations are difficult to determine since most affected individuals are compound 
heterozygotes and many pathogenic variants are not recurrent in the population.

MMAB 

• c.556C>T (p.Arg186Trp). This is the most common pathogenic variant, present in 29%-33% of alleles 
from European and North American cohorts [Lerner-Ellis et al 2006, Forny et al 2022].
Individuals homozygous for this pathogenic variant typically present in the neonatal period and are not 
responsive to hydroxocobalamin treatment.

• c.700C>T (p.Gln234Ter). Individuals with at least one c.700C>T (p.Gln234Ter) pathogenic variant 
generally have more variable, often later age of presentation/diagnosis (range: 2 days – 6.5 years) and some 
affected individuals demonstrate a biochemical response to hydroxocobalamin therapy [Forny et al 2022]. 
This variant is located in the last exon and may avoid nonsense-mediated decay, resulting in a partially 
functional protein.

MMADHC. Truncating pathogenic variants in the N-terminal region (exons 3, 4) cause isolated methylmalonic 
aciduria due to a defect in adenosylcobalamin synthesis; pathogenic variants elsewhere in this gene cause the 
other two biochemical phenotypes (see Genetically Related Disorders).

MMUT. The phenomenon of interallelic complementation makes prediction of genotype/phenotype/enzyme 
activity difficult because some individuals who have two pathogenic variants can have a mut– enzymatic subtype 
in the compound state but a mut0 enzymatic subtype in the homozygous state [Acquaviva et al 2005].

• Persons with two truncating pathogenic variants usually have the mut0 enzymatic subtype.
• Most of the pathogenic variants identified in the N-terminal domain have been associated with mut0 

enzymatic subtype of methylmalonic acidemia [Acquaviva et al 2005, Forny et al 2016]
• The mut– enzymatic subtype is known to be associated mostly, but not exclusively, with pathogenic 

variants in the adenosylcobalamin-binding C-terminal domain of the MMUT protein.
• The mut– enzymatic subtype pathogenic variant usually plays a dominant role when in compound 

heterozygous state with a mut0 enzymatic subtype pathogenic variant, given a OH-Cbl response in the in 
vitro assay [Lempp et al 2007, Forny et al 2016].

• A linker domain spanning residues 482-585 separates the N-terminal, or substrate (methylmalonyl-CoA) 
binding domain from the C-terminal cobalamin-binding domain. This linker region is less conserved and 
has a lower frequency of pathogenic variants [Forny et al 2016].

Table 4. MMUT Pathogenic Missense Variants and Their Typical Enzymatic Subtype

Mut Enzymatic Subtype 
(when Homozygous) DNA Nucleotide Change Predicted Protein Change Reference Sequences

mut0 c.19C>T p.Gln7Ter

NM_000255.4 
NP_000246.2

mut0 c.52C>T p.Gln18Ter

mut0 c.91C>T p.Arg31Ter

mut0 c.278G>A p.Arg93His
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Table 4. continued from previous page.

Mut Enzymatic Subtype 
(when Homozygous) DNA Nucleotide Change Predicted Protein Change Reference Sequences

mut0 c.284C>G p.Pro95Arg

mut0 c.313T>C p.Trp105Arg

mut0 1 c.322C>T 2 p.Arg108Cys

mut0 c.397G>A 3 p.Gly133Arg

mut0 c.410C>T 4 p.Ala137Val

mut0 c.415G>A 3 p.Asp139Asn

mut0 c.521T>C p.Phe174Ser

mut0 c.572C>A 5 p.Ala191Glu

mut0 c.607G>A p.Gly203Arg

mut0 c.643G>A 5 p.Gly215Ser

mut0 c.655A>T 2, 3, 5 p.Asn219Tyr

mut0 c.935G>T p.Gly312Val

mut0 c.982C>T 3 p.Leu328Phe

mut0 c.1105C>T p.Arg369Cys

mut0 c.1106G>A 2, 3, 5, 6 p.Arg369His

mut0 c.1280G>A p.Gly427Asp

mut0 c.1553T>C p.Leu518Pro

mut0 c.1843C>A 3 p.Pro615Thr

mut0 c.1867G>A p.Gly623Arg

mut– c.299A>G 4, 6 p.Tyr100Cys

mut– c.566A>T 3, 7 p.Asn189Ile

mut– c.828G>C 3 p.Glu276Asp

mut– c.947A>G 2 p.Tyr316Cys

mut– c.970G>A 2 p.Ala324Thr

mut– c.1097A>G 4 p.Asn366Ser

mut– c.1160C>T 8 p.Thr387Ile

mut– c.1276G>A 2, 3 p.Gly426Arg

mut– c.1277G>A 3 p.Gly426Glu

mut– c.1663G>A 9 p.Ala555Thr

mut– c.1846C>T 2, 6 p.Arg616Cys

mut– c.1898T>G 10, 10 p.Val633Gly

mut– c.1924G>C 6 p.Gly642Arg

mut– c.2020C>T 8 p.Leu674Phe

mut– c.2054T>G 2, 10 p.Leu685Arg

mut– c.2080C>T 4, 6 p.Arg694Trp

mut– c.2099T>A 3, 5 p.Met700Lys
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Table 4. continued from previous page.

Mut Enzymatic Subtype 
(when Homozygous) DNA Nucleotide Change Predicted Protein Change Reference Sequences

mut– 11 c.2150G>T 2, 3, 6 p.Gly717Val

mut– c.2206C>T 3 p.Leu736Phe

Data in the table have been provided by the authors. GeneReviews staff have not independently verified the classification of variants.
GeneReviews follows the standard naming conventions of the Human Genome Variation Society (varnomen.hgvs.org). See Quick 
Reference for an explanation of nomenclature.
mut0 = mut0 enzymatic subtype
mut– = mut– enzymatic subtype
NA = not applicable
1. Observed in individuals of Mexican/Hispanic descent.
2. Worgan et al [2006]
3. Forny et al [2014], Forny et al [2016]
4. Lempp et al [2007]
5. Acquaviva et al [2005]
6. Manoli et al [2021]
7. Chu et al [2016]
8. Dündar et al [2012]
9. Liang et al [2021], observed in individuals of Chinese descent
10. Adjalla et al [1998]
11. Observed in individuals of African descent

Prevalence
Several studies have estimated the birth prevalence of isolated methylmalonic acidemia. Urine screening for 
isolated methylmalonic acidemia in Quebec identified "symptomatic methylmalonic aciduria" in approximately 
1:80,000 newborns screened [Sniderman et al 1999].

The aggregate incidence from different newborn screening (NBS) programs in the US is reported as 1:159,614 
[Therrell et al 2014, Chapman et al 2018]. A meta-analysis [Almási et al 2019] confirmed that the detection rate 
of MMA and isolated MMA in North America, Europe and Asia-Pacific regions was <1:100,000, while rates in 
the Middle East, North Africa, and Japan were higher [Shigematsu et al 2002].

Genetically Related (Allelic) Disorders
No phenotypes other than those discussed in this GeneReview are known to be associated with biallelic germline 
pathogenic variants in MMUT, MMAA, MMAB, or MCEE.

MMADHC biallelic pathogenic variants are also associated with cblD-combined (methylmalonic acidemia/
aciduria and hyperhomocysteinemia/homocystinuria) and cblD-homocystinuria (hyperhomocysteinemia/
homocystinuria), which are discussed in Disorders of Intracellular Cobalamin Metabolism. The reason for the 
different phenotypes has been explained by reinitiation of translation at the Met62 or Met116 sites in the protein 
product of MMADHC, resulting in a truncated protein product that is sufficient for methylcobalamin synthesis 
[Jusufi et al 2014].

Differential Diagnosis
Other genetic causes of elevated methylmalonic acidemia/aciduria are listed in Table 5. Biochemical findings 
typically allow differentiation of these disorders from isolated methylmalonic acidemia (MMA).
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It is important to note that individuals with cblF or cblJ enzymatic subtypes can have decreased serum vitamin 
B12 levels (the finding of decreased serum vitamin B12 levels suggests a role for the lysosome in intestinal uptake 
of ingested cobalamin).

With the exception of cblX deficiency due to variants in HCFC1, which is inherited in an X-linked manner, the 
disorders summarized in Table 5 are inherited in an autosomal recessive manner.

Table 5. Genetic Disorders with Methylmalonic Acidemia/Aciduria in the Differential Diagnosis of Isolated Methylmalonic Acidemia

Gene Disorder Biochemical Features Clinical Features

ABCD4
cblJ deficiency (See Disorders 
of Intracellular Cobalamin 
Metabolism.)

Combined methylmalonic acidemia & 
hyperhomocysteinemia / 
homocystinuria; can present w/low 
serum B12 levels

5 persons reported: 3 presented neonatally w/
poor growth, feeding problems, hypotonia, 
respiratory distress, bone marrow 
suppression, & congenital heart defect. 2 
presented in early childhood w/
hyperpigmentation & premature graying, & 
transient ischemic attack (in 1 of 2 children).

ACSF3
Combined malonic & 
methylmalonic aciduria 
(OMIM 614265)

High MA & MMA levels in urine or 
plasma, w/MMA excretion typically 
higher than MA excretion (MMA/MA 
>5).
Because C3 (propionylcarnitine) is not ↑, 
affected infants are not detected by NBS 
based on a dried blood spot acylcarnitine 
analysis. 1

Broad phenotypic spectrum ranging from 
completely asymptomatic to adults w/
neurologic syndromes (seizures, memory 
problems, psychiatric disease, ±cognitive 
decline) to children w/a wide range of 
manifestations (e.g., coma, ketoacidosis, 
hypoglycemia, FTT, ↑ transaminases, 
microcephaly, dystonia, axial hypotonia, &/or 
DD). No biochemical or clinical response to 
B12 therapy. A largely benign clinical course 
was reported in an unselected cohort 
(children-young adult) ascertained through 
urine NBS in Quebec. 1

ALDH6A1
Methylmalonate 
semialdehyde dehydrogenase 
deficiency (OMIM 614105)

Extremely variable biochemical 
phenotypes: may be assoc w/3-
hydroxyisobutyric, 3-OH propionic 
aciduria, 3-aminoisobutyric, & β-alanine, 
&/or transient methylmalonic acidemia/
aciduria 2

Extremely variable clinical phenotypes incl 
severe ID, dysmorphic features; assoc w/
significant brain myelination defects 2

AMN 
CUBN

Imerslund-Grasbeck 
syndrome (OMIM PS261100)

Low serum B12, combined 
methylmalonic acidemia & 
hyperhomocysteinemia / 
homocystinuria, proteinuria in ~50% of 
affected persons

Megaloblastic anemia, pallor, FTT, recurrent 
infections, mild proteinuria.

CD320
Transcobalamin receptor 
defect (TcblR) (OMIM 
613646)

Identified on NBS w/an ↑ C3 & ↑ C3/C2 
ratio, ↑ plasma & urine MMA, ± ↑ 
homocysteine & normal or mildly ↑ 
serum vitamin B12 levels 3

Largely asymptomatic. Normal biochemistry 
w/parenteral hydroxocobalamin or oral B12 
supplementation. Bilateral central retinal 
artery occlusion assoc w/
hyperhomocysteinemia reported in 1 person. 
Most reported persons are homozygous for 
NM_016579.3:c.262_264del (p.Glu88del). 3, 4

HCFC1 
THAP11 
ZNF143

cblX & cblX-like deficiency 
(See Disorders of Intracellular 
Cobalamin Metabolism.)

Combined methylmalonic acidemia & 
hyperhomocysteinemia

IUGR, congenital malformations, severe DD 
w/significant ID, early-onset intractable 
seizures; microcephaly, brain malformations, 
& dysmorphic features in some persons
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Table 5. continued from previous page.

Gene Disorder Biochemical Features Clinical Features

LMBRD1
cblF deficiency (See Disorders 
of Intracellular Cobalamin 
Metabolism.)

Combined methylmalonic acidemia & 
hyperhomocysteinemia / 
homocystinuria; presents w/low serum 
B12 levels.

Often presents in infancy w/IUGR, poor 
postnatal growth, feeding difficulties, & DD; 
may also have stomatitis ± glossitis & 
congenital heart malformations

MMACHC 
PRDX1

cblC deficiency (See Disorders 
of Intracellular Cobalamin 
Metabolism.)

↑ plasma concentrations of homocysteine 
& methylmalonic acid, w/↓ levels of 
methionine

Frequently assoc w/DD, ID, progressive 
pigmentary retinopathy, "bull's eye" 
maculopathy, seizures; highly variable age of 
onset

MLYCD Malonyl-CoA decarboxylase 
deficiency (OMIM 248360)

Combined methylmalonic & malonic 
aciduria w/significantly ↑ malonic vs 
methylmalonic acid levels; ↑ C3DC in 
acylcarnitine profile; ketotic dicarboxylic 
aciduria; hypoglycemia 5

Hypoglycemia, metabolic acidosis, ketosis, 
cognitive impairment, seizures, microcephaly. 
Cardiomyopathy (left ventricular non-
compaction, dilated or hypertrophic) is the 
leading cause of morbidity & mortality. 5

SUCLA2

SUCLA2-related mtDNA 
depletion syndrome, 
encephalomyopathic form w/
methylmalonic aciduria 
(succinyl-CoA ligase 
deficiency)

Methylmalonic aciduria ranges from 10 
to 200 mmol/mol creatinine & is 
accompanied by ↑ plasma concentrations 
of lactate, methylcitrate, 3-
hydroxyproprionic & 3-
hydroxyisovaleric acid, 
proprionylcarnitine, & C4-dicarboxylic 
carnitine (C4DC). 6

Hypotonia, muscle atrophy (presenting at age 
~3-6 mos), hyperkinesia, seizures, severe 
hearing impairment, & growth failure. Leigh 
syndrome-like disorder, cortical & basal 
ganglia atrophy, & dystonia. ~30% of affected 
persons succumb during childhood.

SUCLG1

SUCLG1-related mtDNA 
depletion syndrome, 
encephalomyopathic form w/
methylmalonic aciduria 
(succinyl-CoA ligase 
deficiency)

Methylmalonic aciduria ranges from 10 
to 200 mmol/mol creatinine & is 
accompanied by ↑ plasma concentrations 
of lactate, methylcitrate, 3-
hydroxyproprionic & 3-
hydroxyisovaleric acid, 
proprionylcarnitine, & C4-dicarboxylic 
carnitine (C4DC) 6

Hypotonia, muscle atrophy, feeding 
difficulties, & lactic acidosis. Affected infants 
commonly manifest DD/cognitive 
impairment, growth restriction/FTT, 
hepatopathy, hearing impairment, dystonia, & 
hypertonia. Life span is shortened (median 
survival: 20 mos).

TCN2 Transcobalamin II deficiency 
(OMIM 275350)

Combined methylmalonic acidemia & 
hyperhomocysteinemia. Mostly normal 
serum B12, but ↓ unsaturated B12 
binding capacity & ↓TCII detected by 
immunoassay. 7

Pallor, FTT, diarrhea, pancytopenia (can be 
misdiagnosed as leukemia), recurrent 
infections, megaloblastic anemia, 
immunodeficiency, neurologic abnormalities 
if delayed or inadequate treatment 
winjectable B12. 7
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Table 5. continued from previous page.

Gene Disorder Biochemical Features Clinical Features

ZBTB11
ZBTB11-related intellectual 
developmental disorder 
(OMIM 618383)

Biochemical phenotype similar to ACSF3 
deficiency w/high MA & MMA levels in 
urine or plasma, w/MMA excretion 
typically higher than MA excretion 
(MMA/MA >5). Because C3 
(propionylcarnitine) is not ↑, affected 
infants are not detected by NBS based on 
a dried blood spot acylcarnitine analysis.

DD, ID, FTT, microcephaly, cataracts, brain 
abnormalities; some persons can have isolated 
ID & no biochemical phenotype. 8

cbl = cobalamin; DD = developmental delay; FTT = failure to thrive; ID = intellectual disability; IUGR = intrauterine growth 
restriction; MA = malonic acid; MMA = methylmalonic acid; mtDNA = mitochondrial DNA; NBS = newborn screening
1. Alfares et al [2011], Sloan et al [2011], Levtova et al [2019]
2. Chambliss et al [2000], Sass et al [2012], Marcadier et al [2013], Dobrowolski et al [2020]
3. Quadros et al [2010], Hannah-Shmouni et al [2018], Pangilinan et al [2022], Pappas et al [2022]
4. Polymorphisms in CD320 have been associated with increased risk for neural tube defects in an Irish cohort [Pangilinan et al 2010].
5. FitzPatrick et al [1999], Froese et al [2013], Chapel-Crespo et al [2019]
6. Elpeleg et al [2005], Carrozzo et al [2007], Ostergaard et al [2007], Morava et al [2009]
7. Schiff et al [2010], Trakadis et al [2014]
8. Strømme et al [1995], Fattahi et al [2018], Sumathipala et al [2022]

"Benign" MMA, "atypical"MMA, and MMA of unknown cause. Newborn screening (NBS) performed on 
urine rather than dried blood spots (a test method utilized in the province of Quebec and in the early years of 
the Massachusetts NBS program) identified infants with mild-to-moderate urinary methylmalonic acid 
excretion. Follow up of such infants revealed resolution in more than 50% of children, as well as an apparently 
benign, persistent, low-moderate methylmalonic acidemia in some [Giorgio et al 1976, Coulombe et al 1981, 
Ledley et al 1984, Sniderman et al 1999]. Relatively benign MMA with distal renal tubular acidosis (one sibship 
[Dudley et al 1998]) and isolated methylmalonic aciduria with normal plasma concentrations have also been 
reported [Sewell et al 1996, Martens et al 2002].

These older reports were published before the identification of ACSF3 pathogenic variants as a cause of 
CMAMMA (combined malonic and methylmalonic acidemia; OMIM 614265). Given the high minor allele 
frequency of known ACSF3 pathogenic variants (MAF ~ 0.005, with a predicted incidence of 1:37,000) and 
benign clinical phenotypes in some individuals [Levtova et al 2019], it is likely thaT many of these individuals 
harbor pathogenic variants in ACSF3. In a large cohort of individuals with MMA of unknown cause, 6% of 
individuals were found to have pathogenic variants in ACSF3, SUCLG1, or TCN2 [Pupavac et al 2016].

"Atypical" MMA has also been reported in an individual with mitochondrial depletion syndrome/complex IV 
deficiency and combined propionic and methylmalonic acidemia [Yano et al 2003]. The phenotype has 
similarities to the phenotypes in individuals with SUCLA2 or SUCLG1 deficiency.

Despite extensive genome and RNA sequencing, the genetic cause of isolated MMA and low propionate 
incorporation remains unknown in many individuals [Abdrabo et al 2020].

Vitamin B12 deficiency. Individuals with vitamin B12 deficiency can have elevated MMA and homocysteine 
and develop significant hematologic, neurologic, and psychiatric manifestations of B12 deficiency. Serum 
methylmalonic acid and plasma total homocysteine are more sensitive markers than B12 concentrations for 
detecting B12 deficiency [Stabler 2013].

Maternal B12 deficiency can produce an MMA syndrome in an infant that ranges from severe encephalopathy to 
elevated serum concentration of propionylcarnitine (C3) detected by NBS [Chace et al 2001, Campbell et al 
2005, Hinton et al 2010, Scolamiero et al 2014]. This metabolic abnormality can also occur in a breastfed infant 
of a vegan mother, in an infant born to a mother with subclinical pernicious anemia [Marble et al 2008], and in 
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infants born to mothers who have had gastric bypass surgery [Grange & Finlay 1994, Celiker & Chawla 2009, 
González et al 2016]. The mother does not necessarily have a very low serum concentration of vitamin B12. 
Intramuscular vitamin B12 replacement therapy to normalize vitamin B12 serum concentration reverses the 
metabolic abnormality.

It is important to screen pregnant mothers by testing maternal serum B12, as well as serum methylmalonic acid 
and plasma total homocysteine, especially in all infants with positive NBS for elevated propionylcarnitine (C3) 
[Hinton et al 2010, Held et al 2022]. The addition of second-tier strategies of measuring methylmalonic/3-OH-
propionic/methylcitric and homocysteine in dried blood spots can greatly improve detection of acquired vitamin 
B12 deficiency during NBS and allow treatment to prevent serious neurologic manifestations that can result from 
prolonged B12 deficiency in both infant and mother [Gramer et al 2020, Pajares et al 2021].

Reye-like syndrome. A Reye-like syndrome of hepatomegaly and obtundation in the face of a mild intercurrent 
infection can be seen as an unrecognized presentation of a number of inborn errors of metabolism, including 
isolated MMA [Chang et al 2000].

Management
Consensus guidelines on the diagnosis, management, and follow-up for individuals with methylmalonic 
acidemia were published in 2014 [Baumgartner et al 2014] (full text) and revised in 2021 [Forny et al 2021] (full 
text). Several additional expert reviews and publications detail management in acute crises and chronic 
monitoring, treatment of hyperammonemia, dietary practices, and other aspects of clinical care: Ktena et al 
[2015b], Fraser & Venditti [2016], Manoli et al [2016b], Valayannopoulos et al [2016], Aldubayan et al [2017], 
Evans et al [2017], Molema et al [2019], Pinto et al [2020], and Molema et al [2021b], among others.

When isolated MMA is suspected during the diagnostic evaluation due to elevated propionylcarnitine (C3) on a 
newborn blood spot, metabolic treatment should be initiated immediately, while the suspected diagnosis is 
being confirmed.

Once confirmed, development and evaluation of treatment plans, training and education of affected individuals 
and their families, and careful monitoring of dietary treatment (to avoid malnutrition, growth failure) require a 
multidisciplinary approach including multiple subspecialists, with oversight and expertise from a specialized 
metabolic center.

Evaluations Following Initial Diagnosis
To establish the extent of disease and needs in an individual diagnosed with isolated MMA, the evaluations 
summarized Table 6 (if not performed as part of the evaluation that led to the diagnosis) are recommended.

Table 6. Recommended Evaluations Following Initial Diagnosis of Isolated Methylmalonic Acidemia

Evaluation Comment

Consultation w/metabolic physician / biochemical 
geneticist & specialist metabolic dietitian 1

• Transfer to specialist center w/experience in mgmt of inherited 
metabolic diseases is strongly recommended.

• Consider short hospitalization at a center of expertise for 
inherited metabolic conditions to provide caregivers w/detailed 
education (natural history, maintenance & emergency treatment, 
prognosis, & risks for acute encephalopathic crises).

• Review diet/food records w/metabolic dietitian.
• Provide patient/family w/sick-day diet instructions & emergency 

treatment letter detailing mgmt plan & specialist contact 
information (see Table 12).
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Table 6. continued from previous page.

Evaluation Comment

Assessment of vitamin B12 responsiveness

• Generally, 1.0-mg injections (preferably of OHCbl) daily for 3-5 
days

• Obtain >1 baseline & follow-up measures over 10 days to assess 
for a ↓ in serum & urine methylmalonic acid (>50% ↓ is 
considered a positive B12 response).

Consider screening laboratory testing, which may incl:

• Serum vitamin B12 concentration (in newborns; 
see above for vitamin B12 responsiveness.)

• Serum chemistry panel incl renal function, liver 
enzymes 2

• CBC w/differential, iron status, folate
• Arterial or venous blood gas
• Plasma ammonium & lactic acid concentration
• Urinalysis & urine ketone measurement
• Quantitative plasma amino acids
• Urine organic acids 3
• Serum methylmalonic acid & (if available) 

methylcitrate levels
• Measurement of free & total carnitine levels
• Pancreatic enzymes (amylase, lipase)
• Serum albumin, total protein, & prealbumin to 

assess for nutritional status

The choice of screening labs depends on the patient’s current age & 
clinical status.

Cardiac eval, which may incl:

• Blood pressure measurement
• EKG
• Echocardiogram
• Consult w/cardiologist

To assess for hypertension, abnormal QT interval, or other cardiac issues

Measure growth parameters (weight, length/height, head 
circumference). To assess for failure to thrive, poor growth, &/or short stature

Baseline bone age & bone density (DXA)

• Assess for evidence of growth failure, need for gastrostomy tube 
to meet caloric needs, growth hormone treatment.

• Prevent & treat osteopenia due to low-protein diet, renal 
osteodystrophy, delayed puberty.

Developmental assessment Consider referral to developmental pediatrician after newborn period.

Consultation w/neurologist

• To assess for signs & symptoms of mvmt disorder, seizures, 
neuropathy

• Brain imaging (MRI, MRS) in case of abnormal neurologic exam 
findings

Ophthalmology eval To assess for optic nerve atrophy, which typically develops in older 
persons

Audiology eval To assess for hearing loss 4

Consultation w/psychologist &/or social worker To ensure understanding of diagnosis & assess parental / affected 
person's coping skills & resources
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Table 6. continued from previous page.

Evaluation Comment

Genetic counseling by genetics professionals 5 To inform affected persons & families re nature, MOI, & implications of 
isolated MMA in order to facilitate medical & personal decision making

CBC = complete blood count; OHCbl = hydroxocobalamin (as opposed to cyanocobalamin); MOI = mode of inheritance
1. After a new diagnosis of isolated methylmalonic acidemia in a child, the closest hospital and local pediatrician should also be 
informed. The family needs to have an updated emergency treatment letter and plan.
2. Na+, K+, CI–, glucose, urea, creatinine, bicarbonate, AST, ALT, alkaline phosphatase, bilirubin [T/U], lipid panel, and cystatin-C.
3. By gas chromatography and mass spectrometry (GC-MS)
4. Hearing loss may occur in those who have experienced episodes of metabolic decompensation. The risk of hearing loss likely 
increases with age and can be seen along with optic nerve atrophy.
5. Medical/biochemical geneticist, certified genetic counselor, certified advanced genetic nurse

Treatment of Manifestations
Guidelines developed by professionals across 12 European countries and the US based on rigorous literature 
evaluation and expert group meetings outline the current management recommendations and areas for further 
research. See Baumgartner et al [2014] (full text) and Forny et al [2021] (full text).

Table 7. Routine Daily Treatment in Individuals with Isolated Methylmalonic Acidemia

Principle/Manifestation Treatment Considerations/Other

Vitamin B12 supplementation in 
those known to be vitamin B12 
responsive (See Table 6 .)

1 mg hydroxocobalamin administered by 
intramuscular injections, 1-3x/wk to daily, 
depending on metabolic response

Treatment w/cyanocobalamin is contraindicated 
in persons w/cobalamin C deficiency.

Restriction of natural protein, 
particularly of propiogenic 
amino acid precursors 1, while 
maintaining a high-calorie diet 2

• Safe levels of natural protein per age 
group should be the aim (see 2007 
FAO/WHO/UNU report).

• The individual protein amount 
prescribed depends on growth 
parameters, metabolic stability, & 
stage of renal failure.

• A propiogenic amino acid-deficient 
formula 3, 4 & a protein-free 
formula 5 (medical foods) are often 
used to provide addl calories

• Use medical foods in moderation, 
w/relative intake of natural protein 
to propiogenic amino-acid-deficient 
formula not exceeding a ratio of 1:1

• Natural protein must be carefully titrated to 
allow for normal growth. 6

• As infants grow, total protein load is slowly 
↓, based on growth, plasma amino acid 
concentrations, & plasma & urine 
methylmalonic acid concentrations.

• Adjustment of dietary whole (complete)-
protein intake (based on lab findings) is 
required lifelong (see Surveillance).

• Isolated valine & isoleucine deficiencies 
may be caused in part by overuse of 
propiogenic amino-acid deficient formula; 
individual amino acid supplementation 
should be avoided (see Agents/
Circumstances to Avoid).

• A ratio of complete protein to medical 
formula of 60%/40% to 70%/30% of total 
protein prescription is usually not assoc w/
deficiency of valine or isoleucine [Authors, 
personal observation].

• Attn to protein:energy ratio is important; 
when available, accurate assessment of 
resting energy expenditure can guide 
dietary & caloric prescriptions & avoid 
overfeeding. 7

• Plasma amino acids should be drawn ~4 hrs 
after food intake.

• Continue protein restriction & dietary 
monitoring after liver transplantation to 
avoid extrahepatic disease complications.
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Table 7. continued from previous page.

Principle/Manifestation Treatment Considerations/Other

Addressing feeding difficulties, 
recurrent vomiting, growth 
failure

Fundoplication, gastrostomy, or 
jejunostomy

Adequate provision of dietary information & 
education to parents, affected persons, & caregivers

Secondary carnitine deficiency

• Oral dosage of 50-100 mg/kg/day, 
up to ~300 mg/kg/day, of L-
carnitine divided into 3-4 doses is 
common.

• Dose is adjusted on an individual 
basis to maintain plasma free 
carnitine concentration w/in normal 
age-appropriate reference range.

Lifelong carnitine supplementation is generally 
recommended. 8

Reduction in propionate 
production from gut flora

Metronidazole at a dose of 10-15 mg/kg/day 
typically given 1 wk to 10 days every 1-3 
mos

• Rotating antibiotic regimens may be 
considered in some persons.

• Responsiveness to antibiotic should be 
determined by a ↓ in serum methylmalonic 
acid concentration compared to patient's 
baseline value, or a ↓ in whole-body output 
of methylmalonic acid on antibiotic therapy 
by a timed urine collection compared to 
patient's baseline value.

• Chronic cyclic antibiotic therapy is not 
innocuous; it introduces the risk of 
repopulation w/resistant flora & has been 
assoc w/peripheral neuropathy. 9

1. Propiogenic amino acid precursors include isoleucine, valine, methionine and threonine
2. These dietary guidelines do not apply for patients with CblC deficiency, a separate disorder in the pathway [Manoli et al 2016a, 
Manoli et al 2016b].
3. For example, Propimex®-1/2, XMTVI-1/2, or OA-1/2
4. An iatrogenic essential amino acid deficiency can be induced by the relatively high leucine intake through the MMA formulas that 
can negatively affect long-term growth and possibly other outcomes, especially if propiogenic amino-acid deficient formula is 
prescribed in excess of complete protein sources [Manoli et al 2016a, Manoli et al 2016b, Molema et al 2019, Pinto et al 2020, Molema 
et al 2021a].
5. For example, Pro-Phree® or Duocal®
6. In patients with low protein tolerance, severe restriction of propiogenic amino acid precursors (isoleucine, valine, methionine, and 
threonine) can produce a nutritional deficiency state.
7. Hauser et al [2011], Evans et al [2017]
8. Carnitine may replace the free carnitine pool and enhance the conjugation and excretion of propionylcarnitine. The contribution of 
propionylcarnitine excretion to the total propionate load is, however, small. The relief of intracellular CoA accretion may be the 
mechanism by which carnitine supplementation benefits some individuals.
9. This could pose a serious infectious threat and could be especially dangerous to individuals with isolated methylmalonic acidemia, 
since most deaths are related to metabolic decompensation, often precipitated by infection [Diodato et al 2018, Forny et al 2021].

Table 8. Treatment of Secondary Complications in Individuals with Isolated Methylmalonic Acidemia

Manifestation Treatment Consideration/Other

Developmental delay / 
Intellectual 
disability

• Supportive developmental therapies 
(may incl PT, OT, speech & cognitive 
therapies)

• Coordination of individualized 
educational plan in school

Specialists in physiatry, PT, & OT & developmental 
pediatrician can help address the complex challenges 
faced by patients & families, maximize functionality, 
& improve quality of life. 1
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Table 8. continued from previous page.

Manifestation Treatment Consideration/Other

Tubulointerstitial nephritis

Standard therapy per nephrologist incl mgmt of 
chronic acidosis (bicitra or sodium 
bicarbonate), hypertension, anemia, 
hyperuricemia, & renal osteodystrophy/
osteopenia

• See Table 13 for recommended surveillance of 
renal function.

• Avoid nephrotoxic medications (see Agents/
Circumstances to Avoid).

End-stage renal 
disease

Standard therapy, which may incl renal 
replacement therapy such as dialysis

Renal transplantation should be considered ideally 
before the need for hemodialysis, as those w/MMA 
are at risk for exacerbation of complications (e.g., 
hospitalizations, optic nerve disease)

Anemia / 
Bone marrow 
suppression 2

Iron supplementation & erythropoietin may be 
considered; per nephrologiat

This is a typical complication of chronic renal failure 
& may resolve after renal transplantation.

Pancreatitis

Standard therapy incl bowel rest, analgesia, 
institution of IVF hydration & calories, & 
careful enteral alimentation w/low-fat 
preparations

Providing TPN w/intralipids can exacerbate 
pancreatitis.

Liver disease Liver transplantation may be considered. See also Prevention of Primary Manifestations.

Optic nerve 
atrophy No specific treatment is available. Community vision services

Hearing loss Hearing aids may be helpful; per 
otolaryngologist.

Community hearing services through early 
intervention or school district

Growth hormone 
deficiency Growth hormone therapy Dose & diet must be carefully adjusted. 3

Movement 
disorders / 
Dystonia

Standard therapy per neurologist
Antispasmodic medications (trihexyphenidil, 
baclofen pump) or deep brain stimulation have been 
used in persons w/severe basal ganglia strokes.

Spasticity
Orthopedics / physical medicine & rehab / 
PT/OT incl stretching to help avoid contractures 
& falls

Consider need for positioning & mobility devices, 
disability parking placard.

IVF = intravenous fluids; OT = occupational therapy; PT = physical therapy; TPN = total parenteral nutrition
1. Ktena et al [2015b]
2. Inoue et al [1981], Guerra-Moreno et al [2003], MacFarland & Hartung [2015]
3. Documented growth hormone deficiency is a rare cause of growth failure [Bain et al 1995, Al-Owain et al 2004]

Table 9. Emergency Outpatient Treatment in Individuals with Isolated Methylmalonic Acidemia

Manifestation Treatment Consideration/Other

Vomiting, mildly increased 
catabolism 1

• Carbohydrate supplementation orally or 
via tube feed 2

• Reduce natural protein intake 3
• Increase carnitine supplementation 4

• Trial of outpatient treatment at home for 
up to 12 hours

• Initiation of sick-day dietary plan
• Reassessment (~every 2 hours) for 

clinical changes 5

Fever Administration of antipyretics 
(acetaminophen) if temperature rises >38.5°C

• Limit ibuprofen/NSAID use for 
renoprotection.

• Avoid excessive acetaminophen use for 
risk of liver toxicity.
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Table 9. continued from previous page.

Manifestation Treatment Consideration/Other

Occasional vomiting Antiemetics 6 Avoid repeat doses of ondansetron as it can 
prolong the QTc interval on EKG.

1. Fever <38.5°C (101°F); enteral or gastrostomy tube feeding is tolerated without recurrent vomiting or diarrhea; absence of neurologic 
symptoms (altered consciousness, irritability)
2. Stringent guidelines to quantify carbohydrate/caloric requirements are available to guide nutritional arrangements in the outpatient 
setting, with some centers recommending frequent provision of carbohydrate-rich, protein-free beverages every two hours, with 
frequent reassessment.
3. Some centers advocate additional steps such as reducing natural protein intake to zero or to 50% of the normal prescribed regimen 
for short periods (<24 hours) in the outpatient setting during intercurrent illness. Protein restriction more than 24-48 hours could lead 
to catabolism and should be avoided.
4. Temporarily increasing L-carnitine doses (e.g., to 200 mg/kg/day in infants) may be considered.
5. Alterations in mentation/alertness, fever, and enteral feeding tolerance, with any new or evolving clinical features should be 
discussed with the designated center of expertise for inherited metabolic diseases.
6. Some classes of antiemetics can be used safely on an occasional basis to temporarily improve enteral tolerance of food and beverages 
at home or during transfer to hospital.

Acute manifestations (e.g., lethargy, encephalopathy, seizures, or progressive coma), often occurring in the 
setting of intercurrent illness and/or inadequate caloric intake, should be managed symptomatically and with 
generous caloric support in a hospital setting, with aggressive treatment and supportive care. Immediate 
consultation with a metabolic/biochemical geneticist is essential. Individuals with MMA can deteriorate rapidly 
and consultations with neurology, nephrology, and ICU teams are often required during crises (see Table 10).

Table 10. Acute Inpatient Treatment in Individuals with Methylmalonic Acidemia

Manifestation Treatment 1 Consideration/Other

↑ catabolism (due to fever, 
perioperative/peri-
interventional fasting periods, 
repeated vomiting/diarrhea)

• Administration of high-energy IV 
fluids (D10/0.45 or 0.9 saline) at 1.5x 
maintenance rate to achieve age-
appropriate glucose infusion rate 
(GIR), &, if needed insulin 2, 3

• Lipid emulsion is often necessary to 
provide sufficient calories at a dose of 
1- 2 g/kg/day.

• Address electrolytes & pH 
imbalances w/bicarbonate bolus, 
expect need for potassium 
replacement, as needed. 4

• ↓ or omit total protein for ≤24-48 
hours. 5

• L-carnitine IV supplementation at 
50-100 mg/kg/day either BID or QID

• Blood glucose, electrolyte concentrations 
(particularly sodium, potassium & 
bicarbonate concentrations), blood gases 
(w/monitoring of the anion gap), complete 
blood count & differential, serum lactate, 
urine ketones & urine output should be 
followed serially.

• Central or peripheral TPN, which typically 
contains glucose & amino acids, & in some 
instances lipids, may be required. Thiamine 
may be added, esp in the presence of lactic 
acidosis.

• Lipid infusions must be used w/caution due 
to risk of pancreatitis.

• Dietary protein should be reintroduced 
enterally as soon as is feasible given the 
clinical scenario & may need to be further 
augmented w/TPN.

• Nasograstric or orogastric feeding should 
be strongly considered so that enteral 
feedings can be reintroduced w/o delay.
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Table 10. continued from previous page.

Manifestation Treatment 1 Consideration/Other

Hyperammonemia

• N-carbamylglutamate (NCG, 
Carbaglu®) 4, 6

• Administer IV sodium benzoate 4, 7; 
if hyperammonemia persists consider 
sodium phenylbutyrate/acetate.

• Hemodialysis or hemofiltration in 
consultation w/nephrologist may be 
required in the event of treatment 
failure (uncontrollable acidosis &/or 
hyperammonemia).

• A STAT plasma ammonia level should be 
obtained in the ED or on admission.

• NCG activates the first step in the urea cycle 
(CPS1 enzyme) & is effective in lowering 
ammonia concentration during acute crises 
in patients w/MMA. Chronic or periodic 
use has been attempted in cases w/frequent 
decompensations, but has not obtained 
regulatory approval. 6

• Use of phenylacetate may accentuate low 
glutamine levels by generating 
phenylacetylglutamine & deplete 2-
ketoglutarate in the TCA cycle.

New or evolving neurologic 
symptoms (↓ consciousness, 
seizures, dystonic/ 
choreoathetotic movements of 
face/extremities, changes in 
visual acuity)

• Initiate the treatment listed above for 
↑ catabolism.

• Neurologic consultation
• Brain MRI

Symptoms of mvmt disorder can evolve gradually 
& periodic neurologic exam during crises is 
important for early initiation of PT to preserve 
function.

Bone marrow failure 8 Granulocyte-colony stimulating factor may 
be considered.

Supportive care of the metabolic disease typically 
results in resolution of this finding.

BID = twice a day; ED = emergency department; PT = physical therapy; QID = four times a day; TPN = total parenteral nutrition
1. Inpatient emergency treatment should: 
(1) take place at the closest medical facility, 
(2) be started without delay, and 
(3) be supervised by physicians and specialist dieticians at the responsible metabolic center, who should be contacted without delay.
2. Intravenous glucose solutions should preferably consist of D10 or D12.5 (10 - 12.5% dextrose).
3. Use of insulin if hyperglycemia emerges; intravenous insulin given at a starting dose of 0.01-0.02 IU/kg/hour in the event of 
persistent hyperglycemia (>150-180 mg/dL in plasma, or glucosuria)
4. Consult published guidelines, Baumgartner et al [2014], Fraser & Venditti [2016], and Forny et al [2021]. Emergency laboratory 
studies can include amylase/lipase, plasma amino acid levels (to guide TPN prescription), plasma free and total carnitine levels (to 
guide carnitine supplementation), and serum MMA level.
5. Total protein can be gradually reintroduced depending on the patient's acid-base balance and remaining laboratory values, including 
ammonia, lactic acid, and plasma amino acids, among others.
6. The dose of N-carbamylglutamate (NCG) is 100 mg/kg bolus, followed by 25-62 mg/kg every 6 hours PO (orally). NCG is an N-
acetylglutamate analog that allosterically activates CPS1 (carbamyl phosphate synthetase 1), the first step of the urea cycle [Tuchman et 
al 2008, Ah Mew et al 2010, Valayannopoulos et al 2016, Alfadhel et al 2021, Kiykim et al 2021].
7. The dose of sodium benzoate is 250 mg/kg as a bolus given over 90-120 min, followed by 250 mg/kg/day for maintenance, 
administered in 10% dextrose IV (intravenously). The same dose regimen is used for sodium phenylbutyrate (PBA). The maximum 
dose of sodium benzoate or sodium PBA is 5.5 g/m2 or 12 g/d.
8. May include both bone marrow hypoplasia and/or dysplasia

Transition from pediatric to adult-centered multidisciplinary care settings. As MMA is a lifelong disorder 
with varying implications according to age, smooth transition of care from the pediatric setting is essential for 
long-term management and should be organized as a well-planned, continuous, multidisciplinary process 
integrating resources of all relevant subspecialties. Standardized procedures for transitional care do not exist for 
isolated MMA due to the absence of multidisciplinary outpatient departments.

• Transitional care concepts have been developed in which adult internal medicine specialists initially see 
individuals with isolated methylmalonic acidemia together with pediatric or adult metabolic experts, 
dietitians, psychologists, and social workers.
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• As the long-term course of pediatric metabolic diseases in this age group is not yet fully characterized and 
there is limited availability of clinics for adults with IEMs, continuous supervision by a center with 
expertise in metabolic diseases with sufficient resources is essential.

Prevention of Primary Manifestations
See also Table 7, which outlines dietary therapies that can help to prevent a metabolic crisis.

Large case series of affected individuals undergoing elective liver or combined liver/kidney transplantation (as 
opposed to isolated kidney transplantation) have detailed the indications, peri-operative complications, surgical 
and anesthesia approaches, anti-rejection regimens, and long-term outcomes in people with MMA undergoing 
these procedures. Inclusion of enzymatic and genotype information in case series of transplanted individuals 
allows for better comparisons of the outcomes and genotype-phenotype associations that could inform decisions 
about the indication and timing of transplantation in individual cases.

Liver transplantation is increasingly offered to younger affected individuals with significant metabolic instability, 
often in infancy, as a measure to prevent neurologic damage from recurrent metabolic crises associated with 
hyperammonemia. Referral to centers with experience in managing people with organic acidemias and 
continued monitoring and dietary therapy are essential for all MMA transplant recipients.

Table 11. Prevention of Primary Manifestations in Individuals with Isolated Methylmalonic Acidemia

Principle Prevention Considerations/Other

Protection against metabolic 
instability 1

Liver transplantation 2

• The underlying biochemical parameters & 
frequency of metabolic decompensation 
improve significantly in persons undergoing 
liver transplantation despite persistent 
metabolic abnormalities.

• Liver transplantation is not curative. Patients 
remain at risk for long-term complications incl 
renal disease, basal ganglia injury & neurologic 
complications, & optic nerve atrophy. 3 High 
CSF concentrations of methylmalonic acid have 
been reported, especially when protein intake is 
liberalized.

• Neurotoxicity due to calcineurin inhibitors has 
been described in transplanted patients. 4
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Table 11. continued from previous page.

Principle Prevention Considerations/Other

Kidney transplantation 5

• More mildly affected persons w/mut- or cblA 
MMA subtypes who have primarily renal 
failure may undergo isolated renal 
transplantation.

• Elective kidney transplantation, before the 
onset of renal disease, cannot stabilize persons 
w/mut0 MMA and is not recommended. 
Double liver kidney transplant offers a higher 
amount of enzyme activity and allows for better 
control of kidney rejection. 6

1. Most of the metabolic conversion of propionate occurs in the liver, so liver transplantation has the potential to provide enough 
enzymatic activity to avert severe metabolic crises for the most significantly affected individuals (MMA mut0 subtype) and is 
performed electively in younger people to avoid recurrent hospitalizations.
2. More than 100 individuals with MMA have undergone living-donor [Kasahara et al 2006, Morioka et al 2007, Kasahara et al 2014, 
Sakamoto et al 2016, Jang et al 2021] or cadaveric, orthotopic, or partial liver transplantation, or combined liver-kidney transplantation 
[van 't Hoff et al 1998, van't Hoff et al 1999, Kayler et al 2002, Nyhan et al 2002, Hsui et al 2003, McGuire et al 2011, Niemi et al 2015, 
Sloan et al 2015, Spada et al 2015, Critelli et al 2018, Jiang & Sun 2019, Chu et al 2019, Pillai et al 2019, Brassier et al 2020, Yap et al 
2020, Molema et al 2021b]. Living-related donor transplants from heterozygote (carrier) parents may be associated with higher 
incidence of steatosis in the graft liver [Irie et al 2020].
3. Liver transplantation is associated with complications related to surgery (hepatic artery thrombosis, bile duct stenosis, perforation), 
graft rejection, and lifelong immunosuppressive therapy [Chakrapani et al 2002, Nyhan et al 2002, Kaplan et al 2006, Cosson et al 2008, 
McGuire et al 2011, Vernon et al 2014].
4. Neurotoxicity from calcineurin inhibitors, including posterior reversible encephalopathy syndrome (PRES), has been reported 
[Molema et al 2021b].
5. A smaller number (~20) of individuals with MMA (mostly with milder mut- or cblA subtypes) have received isolated renal allografts 
[Van Calcar et al 1998, Coman et al 2006, Cosson et al 2008, Clothier et al 2011, Lubrano et al 2013].
6. Brassier et al [2013], Brassier et al [2020]. One patient died after developing hepatoblastoma, neurologic deterioration accompanied 
by CSF lactic acidosis, and multiorgan failure; a second patient developed progressive neurologic symptoms; and two others developed 
metabolic decompensations post-transplant.

Antioxidants. One individual with isolated MMA who was documented to be glutathione deficient after a 
severe metabolic crisis responded to ascorbate therapy [Treacy et al 1996]. Several studies document increased 
oxidative stress, glutathione depletion, and specific respiratory chain complex deficiencies in persons with the 
mut0 enzymatic subtype of MMA [Atkuri et al 2009, Chandler et al 2009, de Keyzer et al 2009, Manoli et al 
2013], suggesting a potential benefit of treatment with antioxidants or other mitochondria-targeted therapies in 
these individuals.

A regimen of coenzyme Q10 and vitamin E has been shown to prevent progression of acute optic nerve 
involvement in a patient with MMA [Pinar-Sueiro et al 2010]. Thiamine can help with severe lactic acidosis by 
overcoming pyruvate dehydrogenase inhibition during the treatment of acute metabolic crises (see Table 10). 
Whether chronic administration of CoQ10, vitamin E, or N-acetylcysteine could prevent long-term 
complications requires further study [Haijes et al 2019b].

Base replacement. Individuals with MMUT methylmalonic academia (subtype mut0 or mut-) have renal tubular 
dysfunction and low-grade chronic acidosis that can accelerate the progression of their chronic kidney disease. 
Sodium bicarbonate or citrate (Bicitra®) replacement aiming for a serum bicarbonate concentration of 22-24 
µmol/L, is recommended per standard guidelines for management of chronic kidney disease in children 
[KDOQI Work Group 2009, Brown et al 2020]. Bicitra has the additional benefit of offering citrate for TCA cycle 
anaplerosis and was studied in propionic acidemia [Longo et al 2017]. Polycitra contains potassium, which 
should be monitored closely due to the risk of developing hyperkalemia in individuals with kidney disease.
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Prevention of Secondary Complications
One of the most important components of management (as it relates to prevention of secondary complications) 
is education of parents and caregivers such that diligent observation and management can be administered 
expediently in the setting of intercurrent illness or other catabolic stressors (see also Tables 9 and 10). Adherence 
to a low-protein diet and frequent monitoring by the primary metabolic clinic (see Table 13), as well as 
continued care by other specialists (nephrologist, neurologist, gastroenterologist, cardiologist, and others), is 
necessary throughout life.

Table 12. Prevention of Secondary Manifestations in Individuals with Isolated Methylmalonic Acidemia

Manifestation/
Situation Prevention Considerations/Other

Acute 
encephalopathic 
crisis

• Intense & ongoing education of affected persons & 
caregivers re natural history, maintenance & 
emergency treatment, prognosis, & risks of acute 
encephalopathic crises

• Treatment protocols & provision of emergency letters 
or cards to incl guidance for care in the event of illness 
while on holiday/vacation

• MediAlert® bracelets/pendants, or car seat stickers
• Adequate supplies of specialized dietary products 

(protein-free or propiogenic amino acid deficient 
formulas); medication required for maintenance & 
emergency treatment (vitamin B12, carnitine, 
antipyretics, base replacement, in some cases 
Carbaglu®,& other medications, as well as 
gastrostomy or tube feeding supplies) should always 
be maintained at home.

• Written protocols for maintenance & 
emergency treatment should be provided to 
parents & primary care providers/
pediatricians, & to teachers & school 
staff. 1, 2

• Emergency letters/cards should be provided 
summarizing key information & principles 
of emergency treatment for MMA & 
containing contact info for the primary 
treating metabolic center.

• For any planned travel or vacations, 
consider contacting a center of expertise 
near the destination prior to travel dates.

Surgery or 
procedure (incl 
dental) 3

• Notify designated metabolic center in advance of the 
procedure to discuss perioperative management w/
surgeons & anesthesiologists. 4

• Emergency surgeries/procedures require planning 
input from physicians w/expertise in inherited 
metabolic diseases (w/respect to perioperative fluid & 
nutritional management).

Consider placing a "flag" in the affected person's 
medical record so that all care providers are aware 
of the diagnosis & the need to solicit opinions & 
guidance from designated metabolic specialists in 
the setting of certain procedures.

1. Essential information including written treatment protocols should be in place in anticipation of possible future need for inpatient 
emergency treatment.
2. Parents or local hospitals should immediately inform the designated metabolic center if: (1) temperature rises >38.5°C; (2) vomiting/
diarrhea or other symptoms of intercurrent illness develop; or (3) new neurologic symptoms occur.
3. Special considerations regarding choices of anesthetic agents in this patient population may apply [Ktena et al 2015a, Ruzkova et al 
2015].
4. Perioperative/perianesthetic management precautions may include visitations at specialist anesthetic clinics for affected persons 
deemed to be at high risk for perioperative complications.

Surveillance
During the first year of life, infants may need to be evaluated as frequently as every week and continued at 
intervals determined by the frequency of metabolic crises/admissions, growth patterns, and dietary needs. 
Attention to transition periods (e.g., after the first two years, in adolescence) with other stressors in the family 
are necessary for modification of dietary prescription.

In addition to regular evaluations by a metabolic specialist and metabolic dietician, the following are 
recommended. See Table 13.
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Table 13. Recommended Surveillance for Individuals with Isolated Methylmalonic Acidemia

Manifestation Evaluation Frequency/Comment

Poor growth Measurement of growth & head circumference At each visit

Metabolic 
abnormalities

Screening lab testing, incl:

• Plasma amino acids 1
• Plasma & urine MMA levels
• Serum acylcarnitine profile & free & total 

carnitine levels
• Blood chemistries 2
• CBC

At least every 6-12 mos; more 
frequently in infants or in those who 
are unstable or require frequent 
changes in mgmt

Renal 
insufficiency 3

• Measurement of creatinine, cystatin-C, & (if 
available) GFR (e.g., iohexol plasma 
decay) 4, 5, 6

• Renal imaging
• Bone mineral density (DXA) 7
• Early referral to nephrologist is critical for 

consideration of renoprotective measures.
• Monitoring of renal comorbidities by 

multidisciplinary team

At least annually, or as clinically 
indicated

Liver disease
• Liver ultrasound
• Measurement of liver transaminases & alpha-

fetoprotein 8
Annually, or as clinically indicated 9

Delayed 
acquisition of developmental 
milestones

Monitor developmental milestones. 10 At each visit

Neuropsychological testing using age-appropriate 
standardized assessment batteries, development of an 
individualized education plan.

As clinically indicated

Standardized quality-of-life assessment tools for 
affected persons & parents/caregivers As needed

Movement 
disorder

Assessment for clinical symptoms & signs of mvmt 
disorders, severity, & responses to treatment, PT, & 
pharmacologic interventions

At each visit

Optic nerve 
atrophy Ophthalmology eval 11 At least annually, or as clinically 

indicated
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Table 13. continued from previous page.

Manifestation Evaluation Frequency/Comment

Hearing loss 12 Audiology eval At least annually in childhood & 
adolescence, or as clinically indicated

CBC = complete blood count; GFR = glomerular filtration rate; PT = physical therapy
1. Frequent monitoring of plasma amino acids is necessary to avoid deficiencies of essential amino acids (particularly isoleucine, valine, 
and methionine) as a result of excessive protein restriction and the development of acrodermatitis-enteropathica-like cutaneous lesions 
in methylmalonic aciduria, as in other organic acidurias (glutaric aciduria-I) and amino acid disorders (maple syrup urine disease) [De 
Raeve et al 1994].
2. Including Na+, K+, CI–, glucose, urea, creatinine, bicarbonate, AST, ALT, alkaline phosphatase, bilirubin (T/U), triglycerides, and 
cholesterol
3. Comorbidities of renal disease may include anemia, acidosis, hyperuricemia, secondary hyperparathyroidism, osteopenia/
osteoporosis, hypertension, and short stature. In addition to cystatin-C, biochemical markers of bone health (Ca, P, alkaline 
phosphatase, parathyroid hormone, 1.25 dihydroxy-vit D (D3), and uric acid should be assessed periodically.
4. Combined equations based on creatinine and cystatin-C and measured GFR by iohexol clearance or other methods are expected to 
reflect more accurately the kidney function in people with MMA [Dao et al 2021]. Age-appropriate formulas to estimate GFR are 
available for both pediatric patients and adult patients.
5. To allow for early referral to nephrologist and appropriate timing of renal transplantation when needed [van't Hoff et al 1999, 
Kruszka et al 2013].
6. Nephrotoxic medication should be avoided (see Agents/Circumstances to Avoid).
7. DXA scan is typically done in older individuals, starting in adolescence, unless there is evidence for renal disease earlier.
8. Imbard et al [2018]
9. Particularly in individuals with severe MMA subtypes
10. Enrollment in early intervention programs for physical, occupational, and speech therapy is recommended.
11. To assess for optic nerve thinning/pallor
12. Hearing loss can occur in isolated MMA and may be a result of episodes of metabolic decompensation.

Agents/Circumstances to Avoid
The following should be avoided:

• Fasting. During acute illness, intake of adequate calories is necessary to arrest/prevent decompensation.
• Stress
• Increased dietary protein
• Supplementation with the individual propiogenic amino acids valine and isoleucine, as they directly 

increase the toxic metabolite load in patients with disordered propionate oxidation [Nyhan et al 1973, 
Hauser et al 2011, Manoli et al 2016b]

• Nephrotoxic medications or agents (e.g. ibuprofen)
• Agents that prolong QTc in the EKG

Evaluation of Relatives at Risk
Evaluation of all at-risk sibs of any age is warranted to allow for early diagnosis and treatment of isolated 
methylmalonic acidemia.

For at-risk newborn sibs when prenatal testing was not performed: in parallel with newborn screening, measure 
serum methylmalonic acid, urine organic acids, plasma acylcarnitine profile, plasma amino acids, and serum 
B12; and test for the familial isolated methylmalonic acidemia-causing pathogenic variants if biochemistry is 
abnormal.

Prenatal diagnosis of at-risk sibs may allow for prompt treatment of affected newborns at the time of delivery or 
prenatal administration of vitamin B12 in responsive subtypes, especially cblA.

See Genetic Counseling for issues related to testing of at-risk relatives for genetic counseling purposes.
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Pregnancy Management
Affected mother

• In pregnancies of affected women with MMA, complications observed included acute decompensation or 
hyperammonemia, deterioration of renal function, and obstetric complications including preeclampsia, 
preterm delivery, and cæsarean section [Raval et al 2015].

• Despite high maternal MMA levels, fetal growth and development have been reported to be normal, 
suggesting negligible teratogenic effects to the fetus from exposure to high methylmalonic acid levels in 
utero, though long-term follow up with age-appropriate neurocognitive testing is limited [Wasserstein et 
al 1999, Deodato et al 2002].

• Pregnancies in transplant recipients are rare and further studies on the health of the offspring are needed 
[Marcellino et al 2021].

Unaffected mother with an affected fetus. Oral and intramuscular vitamin B12 has been administered to 
women pregnant with a fetus with vitamin B12-responsive MMA, resulting in decreased maternal MMA urine 
output [Ampola et al 1975, van der Meer et al 1990]. These observations notwithstanding, maternal vitamin B12 
supplementation for isolated MMA needs further study.

See MotherToBaby for further information on medication use during pregnancy.

Therapies Under Investigation
13-C-propionate breath test. A stable isotope 13-C-propionate breath test has been developed as a surrogate 
biomarker of disease severity and was shown to correlate with in vitro 14-C-propionate incorporation, isolated 
MMA subtype, and several disease-related manifestations (rate of progression of chronic renal disease, growth 
parameters, and cognitive outcomes). Moreover, it showed a response to B12 supplementation or solid organ 
transplantation [Manoli et al 2021]. It can be used in specialized centers to help prognosticate disease severity 
and select affected individuals with very low oxidation rates for referral to transplantation or clinical trials 
testing novel genomic therapies.

Increased understanding of the underlying pathophysiology and the generation of disease-specific animal or 
cellular models has allowed the development of several novel therapies for isolated MMA [Chandler & Venditti 
2019, Luciani et al 2020, Dimitrov et al 2021, Head et al 2022]. The effect of each of these therapeutic approaches 
on the long-term clinical outcomes of MMA remains to be elucidated.

• Liver-targeted genomic therapies including systemic canonic recombinant adeno-associated virus (rAAV) 
gene therapy [Chandler & Venditti 2008, Carrillo-Carrasco et al 2010, Chandler & Venditti 2010, 
Chandler & Venditti 2012, Sénac et al 2012, Chandler et al 2021], systemic mRNA replacement [An et al 
2017], and genome editing into the albumin locus [Chandler et al 2021] have shown significant promise in 
animal models and are reaching Phase I/II clinical trials as promising alternatives to liver transplantation.

• Studies using primary hepatocytes from individuals with methylmalonic and propionic acidemia have 
found that administration of the small molecule 2,2-dimethylbutanoic acid (HST5040) leads to a dose 
dependent reduction in levels of methylmalonyl-CoA and other serum metabolites. This small molecule is 
being tested in clinical trials [Armstrong et al 2021].

• Investigational therapies intended to increase CoA levels by allosterically modulating pantothenate 
kinases, key enzymes in the CoA biosynthesis pathway, have been shown to increase free CoA and 
alleviate mitochondrial dysfunction in mouse models of propionic academia (PA) [Subramanian et al 
2021] and are being tested in clinical trials for MMA and PA.

• Carefully designed clinical studies are required to evaluate the efficacy of antioxidant regimens in people 
with MMA.
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Review the following for more information on current clinical trials on isolated MMA:

clinicaltrials.gov/ct2/show/NCT04581785

clinicaltrials.gov/ct2/show/NCT04732429

clinicaltrials.gov/ct2/show/NCT04899310

clinicaltrials.gov/ct2/show/NCT04836494

Search ClinicalTrials.gov in the US and EU Clinical Trials Register in Europe for information on clinical studies 
for a wide range of diseases and conditions.

Genetic Counseling
Genetic counseling is the process of providing individuals and families with information on the nature, mode(s) of 
inheritance, and implications of genetic disorders to help them make informed medical and personal decisions. The 
following section deals with genetic risk assessment and the use of family history and genetic testing to clarify genetic 
status for family members; it is not meant to address all personal, cultural, or ethical issues that may arise or to 
substitute for consultation with a genetics professional. —ED.

Mode of Inheritance
All forms of isolated methylmalonic acidemia (MMA) – including complete or partial deficiency of the enzyme 
methylmalonyl-CoA mutase; defect in transport or synthesis of the methylmalonyl-CoA mutase cofactor, 
5'deoxyadenosyl-cobalamin; and deficiency of the enzyme methylmalonyl-CoA epimerase – are inherited in an 
autosomal recessive manner.

Risk to Family Members
Parents of a proband

• The parents of an affected child are presumed to be heterozygous for an MMUT, MMAA, MMAB, MCEE, 
or MMADHC pathogenic variant.

• If a molecular diagnosis has been established in the proband, molecular genetic testing is recommended 
for the parents of the proband to confirm that both parents are heterozygous for an isolated MMA-causing 
pathogenic variant and to allow reliable recurrence risk assessment. If a pathogenic variant is detected in 
only one parent and parental identity testing has confirmed biological maternity and paternity, the 
following possibilities should be considered:
⚬ One of the pathogenic variants identified in the proband occurred as a de novo event in the proband 

or as a postzygotic de novo event in a mosaic parent [Jónsson et al 2017].
⚬ Uniparental isodisomy for the parental chromosome with the pathogenic variant resulted in 

homozygosity for the pathogenic variant in the proband. Uniparental isodisomy has been reported 
(MMUT [id(6)pat] and MMAA [segmental upd(4)mat] [Abramowicz et al 1994, Chen et al 2020].)

• Heterozygotes (carriers) of a pathogenic variant in an isolated MMA-related gene (i.e., MMUT, MMAA, 
MMAB, MCEE, or MMADHC) have normal metabolite concentrations.

Sibs of a proband

• If both parents are known to be heterozygous for an isolated MMA-causing pathogenic variant, each sib of 
an affected individual has at conception a 25% chance of being affected, a 50% chance of being an 
asymptomatic carrier, and a 25% chance of inheriting neither of the familial pathogenic variants.

• Heterozygotes (carriers) of a pathogenic variant in an isolated MMA-causing gene (i.e., MMUT, MMAA, 
MMAB, MCEE, or MMADHC) have normal metabolite concentrations.
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Offspring of a proband. Unless an affected individual's reproductive partner also has isolated MMA or is a 
carrier, offspring will be obligate heterozygotes (carriers) for a pathogenic variant in an isolated MMA-related 
gene.

Other family members. Each sib of the proband's parents is at a 50% risk of being a carrier of an isolated MMA-
causing pathogenic variant.

Carrier Detection
• Carrier testing for at-risk relatives requires prior identification of the isolated MMA-causing pathogenic 

variants in the family.
• MMUT is included in the recommended gene list for carrier screening (Tier II) and may be included on 

expanded carrier screening panels [Gregg et al 2021].

Methods other than molecular genetic testing are not reliable for carrier testing.

Related Genetic Counseling Issues
See Management, Evaluation of Relatives at Risk for information on testing at-risk relatives for the purpose of 
early diagnosis and treatment.

Family planning

• The optimal time for determination of genetic risk and discussion of the availability of prenatal/
preimplantation genetic testing is before pregnancy.

• It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and 
reproductive options) to young adults who are affected, are carriers, or are at risk of being carriers.

DNA banking. Because it is likely that testing methodology and our understanding of genes, pathogenic 
mechanisms, and diseases will improve in the future, consideration should be given to banking DNA from 
probands in whom a molecular diagnosis has not been confirmed (i.e., the causative pathogenic mechanism is 
unknown). For more information, see Huang et al [2022].

Prenatal Testing and Preimplantation Genetic Testing
Molecular genetic testing. Once the isolated MMA-causing pathogenic variants have been identified in an 
affected family member, prenatal and preimplantation genetic testing are possible.

Biochemical testing. Both amniotic fluid measurements for methylmalonic acid and cellular biochemical assays 
(14C propionate incorporation and complementation assays) on cultured fetal cells obtained by amniocentesis or 
chorionic villus sampling have been used for prenatal testing [Morel et al 2005]. However, due to the limited 
availability and longer turnaround time for cellular biochemical assays, the preferred method for prenatal 
diagnosis is molecular genetic testing.

Resources
GeneReviews staff has selected the following disease-specific and/or umbrella support organizations and/or registries 
for the benefit of individuals with this disorder and their families. GeneReviews is not responsible for the 
information provided by other organizations. For information on selection criteria, click here.

• British Inherited Metabolic Disease Group (BIMDG)
TEMPLE (Tools Enabling Metabolic Parents LEarning)
United Kingdom
MMA
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• MedlinePlus
Methylmalonic acidemia

• Newborn Screening in Your State
Health Resources & Services Administration
newbornscreening.hrsa.gov/your-state

• Organic Acidemia Association
Phone: 763-559-1797
Email: info@oaanews.org
oaanews.org

• European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD)
e-imd.org/event/european-registry-and-network-intoxication-type-metabolic-diseases

Molecular Genetics
Information in the Molecular Genetics and OMIM tables may differ from that elsewhere in the GeneReview: tables 
may contain more recent information. —ED.

Table A. Isolated Methylmalonic Acidemia: Genes and Databases

Gene Chromosome 
Locus

Protein Locus-Specific 
Databases

HGMD ClinVar

MCEE 2p13.3 Methylmalonyl-CoA 
epimerase, mitochondrial

ZJU-CGGM Database 
(MCEE)

MCEE MCEE

MMAA 4q31.21 Methylmalonic aciduria 
type A protein, 
mitochondrial

ZJU-CGGM Database 
(MMAA)

MMAA MMAA

MMAB 12q24.11 Corrinoid 
adenosyltransferase MMAB

ZJU-CGGM Database 
(MMAB) 
MMAB @ LOVD

MMAB MMAB

MMADHC 2q23.2 Cobalamin trafficking 
protein CblD

ZJU-CGGM Database 
(MMADHC) 
MMADHC @ LOVD

MMADHC MMADHC

MMUT 6p12.3 Methylmalonyl-CoA 
mutase, mitochondrial

ZJU-CGGM Database 
(MUT)

MMUT MMUT

Data are compiled from the following standard references: gene from HGNC; chromosome locus from OMIM; protein from UniProt. 
For a description of databases (Locus Specific, HGMD, ClinVar) to which links are provided, click here.

Table B. OMIM Entries for Isolated Methylmalonic Acidemia (View All in OMIM)

251000 METHYLMALONIC ACIDURIA DUE TO METHYLMALONYL-CoA MUTASE DEFICIENCY; MAMM

251100 METHYLMALONIC ACIDURIA, cblA TYPE; MACA

251110 METHYLMALONIC ACIDURIA, cblB TYPE; MACB

251120 METHYLMALONYL-CoA EPIMERASE DEFICIENCY

607481 METABOLISM OF COBALAMIN ASSOCIATED A; MMAA

607568 METABOLISM OF COBALAMIN ASSOCIATED B; MMAB

608419 METHYLMALONYL-CoA EPIMERASE; MCEE

609058 METHYLMALONYL-CoA MUTASE; MMUT
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https://medlineplus.gov/genetics/condition/methylmalonic-acidemia/
https://newbornscreening.hrsa.gov/your-state
https://oaanews.org/
https://www.e-imd.org/event/european-registry-and-network-intoxication-type-metabolic-diseases
https://www.ncbi.nlm.nih.gov/gene/84693
https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&acc=84693
http://www.uniprot.org/uniprot/Q96PE7
http://www.uniprot.org/uniprot/Q96PE7
https://lovd.nl/MCEE
https://lovd.nl/MCEE
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MCEE
https://www.ncbi.nlm.nih.gov/clinvar/?term=MCEE[gene]
https://www.ncbi.nlm.nih.gov/gene/166785
https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&acc=166785
http://www.uniprot.org/uniprot/Q8IVH4
http://www.uniprot.org/uniprot/Q8IVH4
http://www.uniprot.org/uniprot/Q8IVH4
https://lovd.nl/MMAA
https://lovd.nl/MMAA
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMAA
https://www.ncbi.nlm.nih.gov/clinvar/?term=MMAA[gene]
https://www.ncbi.nlm.nih.gov/gene/326625
https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&acc=326625
http://www.uniprot.org/uniprot/Q96EY8
http://www.uniprot.org/uniprot/Q96EY8
https://lovd.nl/MMAB
https://lovd.nl/MMAB
https://databases.lovd.nl/shared/genes/MMAB
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMAB
https://www.ncbi.nlm.nih.gov/clinvar/?term=MMAB[gene]
https://www.ncbi.nlm.nih.gov/gene/27249
https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&acc=27249
http://www.uniprot.org/uniprot/Q9H3L0
http://www.uniprot.org/uniprot/Q9H3L0
https://lovd.nl/MMADHC
https://lovd.nl/MMADHC
https://databases.lovd.nl/shared/genes/MMADHC
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMADHC
https://www.ncbi.nlm.nih.gov/clinvar/?term=MMADHC[gene]
https://www.ncbi.nlm.nih.gov/gene/4594
https://www.ncbi.nlm.nih.gov/genome/gdv/?context=gene&acc=4594
http://www.uniprot.org/uniprot/P22033
http://www.uniprot.org/uniprot/P22033
https://lovd.nl/MUT
https://lovd.nl/MUT
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MMUT
https://www.ncbi.nlm.nih.gov/clinvar/?term=MMUT[gene]
http://www.genenames.org/index.html
http://www.omim.org/
http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/books/n/gene/app1/
https://www.ncbi.nlm.nih.gov/omim/251000,251100,251110,251120,607481,607568,608419,609058,611935,620953
https://www.ncbi.nlm.nih.gov/omim/251000
https://www.ncbi.nlm.nih.gov/omim/251100
https://www.ncbi.nlm.nih.gov/omim/251110
https://www.ncbi.nlm.nih.gov/omim/251120
https://www.ncbi.nlm.nih.gov/omim/607481
https://www.ncbi.nlm.nih.gov/omim/607568
https://www.ncbi.nlm.nih.gov/omim/608419
https://www.ncbi.nlm.nih.gov/omim/609058


Table B. continued from previous page.

611935 METABOLISM OF COBALAMIN ASSOCIATED D; MMADHC

620953 METHYLMALONIC ACIDURIA, cblD TYPE; MACD

Molecular Pathogenesis
Isolated MMA results from the failure to isomerize (convert) methylmalonyl-CoA into succinyl-CoA during 
propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, 
hypomethioninemia, or variations in other metabolites, such as malonic acid (Figure 1). Several different 
enzyme deficiencies affecting these metabolic steps can cause isolated MMA (Figure 2), including the 
methylmalonyl-CoA mutase itself and those providing the adenosylcobalamin as a cofactor. MMAA encodes a 
GTPase critical for the mitochondrial assembly of adenosylcobalamin (AdoCbl) to the methylmalonyl-CoA 
enzyme [Froese et al 2010]. MMAB encodes an ATP:cob(I)alamin adenosyltransferase (ATR) that transfers 5′-
deoxyadenosyl from ATP to Cbl forming AdoCbl and delivers it to the methylmalonyl-CoA enzyme. MMUT 
encodes methylmalonyl-CoA mutase, a mitochondrial enzyme that catalyzes the isomerization of 
methylmalonyl-CoA to succinyl-CoA, which requires AdoCbl as coenzyme. MMADHC encodes a protein 
necessary in the early metabolic pathway of AdoCbl formation.

Aberrant post-translational modifications (methylmalonylation) have inhibitory effects on critical enzymes in 
the urea cycle and glycine cleavage pathways, causing the secondary disease manifestations such as 
hyperammonemia and hyperglycinemia in MMA [Head et al 2022].

Plasma fibroblast growth factor 21 (FGF21) has been characterized as a marker of hepatic mitochondrial 
dysfunction in MMA murine models and was shown to correlate with disease severity and long-term 
complications in different patient cohorts [Manoli et al 2018, Molema et al 2018, Manoli et al 2021].

Mechanism of disease causation. Loss of function

Table 14. Isolated Methylmalonic Acidemia: Gene-Specific Laboratory Considerations

Gene 1 Special Consideration

MCEE A deep intronic variant (c.379-644A>G) that may not be detected by routine NGS panels or WES (depending on coverage) 
has been reported.

MMUT Intronic variants that may not be detected by routine NGS panels or WES (depending on coverage) have been reported.

NGS = next generation sequencing; WES = whole-exome sequencing
1. Genes from Table 2 in alphabetic order

Notable variants by gene. See Table 4 for a list of specific pathogenic MMUT variants, that when in a 
homozygous state, lead to a specific predicted enzymatic phenotype. Further notable pathogenic variants by 
gene are listed in Table 15.
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Table 15. Isolated Methylmalonic Acidemia: Notable Pathogenic Variants by Gene

Gene 1 Reference Sequences DNA Nucleotide 
Change Predicted Protein Change Comment

MCEE

NM_032601.4 
NP_115990.3 c.139C>T p.Arg47Ter

Common pathogenic variant, observed in 
homozygous state in >50% of reported persons 
[Heuberger et al 2019]

NM_032601.4 c.379-644A>G -- Deep intronic variant that creates new splice 
site [Waters et al 2016]

NM_032601.4 
NP_115990.3 c.419del p.Lys140ArgfsTer6

Reported in an adult w/↑ serum MMA, 
neurodegeneration initially attributed to 
Parkinson disease, dementia, & stroke 
[Andréasson et al 2019]

MMAA NM_172250.3 
NP_758454.1

c.433C>T p.Arg145Ter Common pathogenic variant, accounting for 
43% of mutated alleles [Lerner-Ellis et al 2004]

c.503del p.(Thr168MetfsTer10)
This variant resides on a common haplotype & 
has also been seen in Spanish persons 
[Martínez et al 2005]

MMAB NM_052845.4 
NP_443077.1

c.556C>T p.Arg186Trp

Most common pathogenic variant, accounts for 
33% of all alleles; seen exclusively in persons of 
European descent; assoc w/early onset of 
symptoms (age <1 yr) whether in heterozygous 
or homozygous state [Lerner-Ellis et al 2006]

c.700C>T p.Gln234Ter
Cobalamin-responsive variant assoc w/late-
onset disease & an attenuated phenotype 
[Forny et al 2021]

c.656_659del p.Tyr219SerfsTer4
In vivo response to vitamin B12 reported in 
heterozygotes [Hörster et al 2007, Hörster et al 
2021, Forny et al 2022]

MMUT 2 NM_000255.4 
NP_000246.2

c.322C>T p.Arg108Cys Observed in persons of Hispanic descent 
[Worgan et al 2006]

c.2150G>T p.Gly717Val More common in persons of African descent 
[Worgan et al 2006]

c.655A>T p.Asn219Tyr Observed more frequently in persons of 
European descent [Forny et al 2016]c.1106G>A p.Arg369His

Variants listed in the table have been provided by the authors. GeneReviews staff have not independently verified the classification of 
variants.
GeneReviews follows the standard naming conventions of the Human Genome Variation Society (varnomen.hgvs.org). See Quick 
Reference for an explanation of nomenclature.
1. Genes from Table 2 in alphabetic order
2. See also Table 4 for a list of variants and their predicted enzymatic activities when homozygous.

Chapter Notes
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