TatC family protein similar to twin-arginine translocase subunit TatC which is part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes
Twin arginine targeting (Tat) protein translocase TatC; This model represents the TatC ...
7-234
1.07e-16
Twin arginine targeting (Tat) protein translocase TatC; This model represents the TatC translocase component of the Sec-independent protein translocation system. This system is responsible for translocation of folded proteins, often with bound cofactors across the periplasmic membrane. A related model (TIGR01912) represents the archaeal clade of this family. TatC is often found in a gene cluster with the two other components of the system, TatA/E (TIGR01411) and TatB (TIGR01410). A model also exists for the Twin-arginine signal sequence (TIGR01409). [Protein fate, Protein and peptide secretion and trafficking]
Pssm-ID: 273355 Cd Length: 215 Bit Score: 76.10 E-value: 1.07e-16
Sec-independent protein translocase protein (TatC); The bacterial Tat system has a remarkable ...
7-227
1.21e-15
Sec-independent protein translocase protein (TatC); The bacterial Tat system has a remarkable ability to transport folded proteins even enzyme complexes across the cytoplasmic membrane. It is structurally and mechanistically similar to the Delta pH-driven thylakoidal protein import pathway. A functional Tat system or Delta pH-dependent pathway requires three integral membrane proteins: TatA/Tha4, TatB/Hcf106 and TatC/cpTatC. The TatC protein is essential for the function of both pathways. It might be involved in twin-arginine signal peptide recognition, protein translocation and proton translocation. Sequence analysis predicts that TatC contains six transmembrane helices (TMHs), and experimental data confirmed that N- and C-termini of TatC or cpTatC are exposed to the cytoplasmic or stromal face of the membrane. The cytoplasmic N-terminus and the first cytoplasmic loop region of the Escherichia coli TatC protein are essential for protein export. At least two TatC molecules co-exist within each Tat translocon.
Pssm-ID: 459989 Cd Length: 210 Bit Score: 73.23 E-value: 1.21e-15
Twin arginine targeting (Tat) protein translocase TatC; This model represents the TatC ...
7-234
1.07e-16
Twin arginine targeting (Tat) protein translocase TatC; This model represents the TatC translocase component of the Sec-independent protein translocation system. This system is responsible for translocation of folded proteins, often with bound cofactors across the periplasmic membrane. A related model (TIGR01912) represents the archaeal clade of this family. TatC is often found in a gene cluster with the two other components of the system, TatA/E (TIGR01411) and TatB (TIGR01410). A model also exists for the Twin-arginine signal sequence (TIGR01409). [Protein fate, Protein and peptide secretion and trafficking]
Pssm-ID: 273355 Cd Length: 215 Bit Score: 76.10 E-value: 1.07e-16
Sec-independent protein translocase protein (TatC); The bacterial Tat system has a remarkable ...
7-227
1.21e-15
Sec-independent protein translocase protein (TatC); The bacterial Tat system has a remarkable ability to transport folded proteins even enzyme complexes across the cytoplasmic membrane. It is structurally and mechanistically similar to the Delta pH-driven thylakoidal protein import pathway. A functional Tat system or Delta pH-dependent pathway requires three integral membrane proteins: TatA/Tha4, TatB/Hcf106 and TatC/cpTatC. The TatC protein is essential for the function of both pathways. It might be involved in twin-arginine signal peptide recognition, protein translocation and proton translocation. Sequence analysis predicts that TatC contains six transmembrane helices (TMHs), and experimental data confirmed that N- and C-termini of TatC or cpTatC are exposed to the cytoplasmic or stromal face of the membrane. The cytoplasmic N-terminus and the first cytoplasmic loop region of the Escherichia coli TatC protein are essential for protein export. At least two TatC molecules co-exist within each Tat translocon.
Pssm-ID: 459989 Cd Length: 210 Bit Score: 73.23 E-value: 1.21e-15
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options