cytosolic carboxypeptidase 1 isoform X1 [Hirundo rustica]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
M14_Nna1 | cd06906 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; ... |
870-1139 | 0e+00 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the mouse Nna1/CCP-1, and -4 proteins, and the human Nna1/AGTPBP-1 protein. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. : Pssm-ID: 349477 Cd Length: 271 Bit Score: 598.21 E-value: 0e+00
|
|||||||||
Pepdidase_M14_N super family | cl39445 | Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain ... |
713-847 | 1.24e-16 | |||||
Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain of cytosolic carboxypeptidases. The N-terminal domain folds into a nine-stranded antiparallel beta sandwich. This domain is specific to CCP proteins and is absent in other carboxypeptidases. It has been hypothesized that the N-terminal domain might contribute to folding, might have a regulatory function and/or might be involved in binding other proteins. The actual alignment was detected with superfamily member pfam18027: Pssm-ID: 407865 Cd Length: 107 Bit Score: 76.55 E-value: 1.24e-16
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
M14_Nna1 | cd06906 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; ... |
870-1139 | 0e+00 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the mouse Nna1/CCP-1, and -4 proteins, and the human Nna1/AGTPBP-1 protein. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349477 Cd Length: 271 Bit Score: 598.21 E-value: 0e+00
|
|||||||||
MpaA | COG2866 | Murein tripeptide amidase MpaA [Cell wall/membrane/envelope biogenesis]; |
851-986 | 2.08e-18 | |||||
Murein tripeptide amidase MpaA [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442113 [Multi-domain] Cd Length: 337 Bit Score: 88.21 E-value: 2.08e-18
|
|||||||||
Pepdidase_M14_N | pfam18027 | Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain ... |
713-847 | 1.24e-16 | |||||
Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain of cytosolic carboxypeptidases. The N-terminal domain folds into a nine-stranded antiparallel beta sandwich. This domain is specific to CCP proteins and is absent in other carboxypeptidases. It has been hypothesized that the N-terminal domain might contribute to folding, might have a regulatory function and/or might be involved in binding other proteins. Pssm-ID: 407865 Cd Length: 107 Bit Score: 76.55 E-value: 1.24e-16
|
|||||||||
Zn_pept | smart00631 | Zn_pept domain; |
851-1030 | 4.91e-15 | |||||
Zn_pept domain; Pssm-ID: 214748 [Multi-domain] Cd Length: 277 Bit Score: 76.99 E-value: 4.91e-15
|
|||||||||
Peptidase_M14 | pfam00246 | Zinc carboxypeptidase; |
882-983 | 2.26e-07 | |||||
Zinc carboxypeptidase; Pssm-ID: 459730 [Multi-domain] Cd Length: 287 Bit Score: 53.84 E-value: 2.26e-07
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
M14_Nna1 | cd06906 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; ... |
870-1139 | 0e+00 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the mouse Nna1/CCP-1, and -4 proteins, and the human Nna1/AGTPBP-1 protein. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349477 Cd Length: 271 Bit Score: 598.21 E-value: 0e+00
|
|||||||||
M14_AGTPBP-like | cd06235 | Peptidase M14-like domain of human Nna1/AGTPBP-1, AGBL2 -5, and related proteins; Subgroup of ... |
872-1136 | 2.64e-131 | |||||
Peptidase M14-like domain of human Nna1/AGTPBP-1, AGBL2 -5, and related proteins; Subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human Nna1/AGTPBP-1 and AGBL -2, -3, -4, and -5, and the mouse Nna1/CCP-1 and CCP -2 through -6. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349454 Cd Length: 256 Bit Score: 401.84 E-value: 2.64e-131
|
|||||||||
M14_AGBL2-3_like | cd06907 | Peptidase M14-like domain of ATP/GTP binding protein AGBL-2 and AGBL-3, and related proteins; ... |
873-1136 | 7.96e-108 | |||||
Peptidase M14-like domain of ATP/GTP binding protein AGBL-2 and AGBL-3, and related proteins; Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-2, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This subgroup includes the human AGBL-2, and -3, and the mouse cytosolic carboxypeptidase (CCPs)-2, and -3. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349478 Cd Length: 252 Bit Score: 338.89 E-value: 7.96e-108
|
|||||||||
M14_AGBL4_like | cd06908 | Peptidase M14-like domain of ATP/GTP binding protein AGBL-4 and related proteins; Peptidase ... |
873-1103 | 3.34e-62 | |||||
Peptidase M14-like domain of ATP/GTP binding protein AGBL-4 and related proteins; Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-4, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human AGBL4 and the mouse cytosolic carboxypeptidase (CCP)-6. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349479 Cd Length: 254 Bit Score: 212.93 E-value: 3.34e-62
|
|||||||||
M14_AGBL5_like | cd06236 | Peptidase M14-like domain of ATP/GTP binding protein (AGBL)-5 and related proteins; Peptidase ... |
869-1103 | 6.66e-57 | |||||
Peptidase M14-like domain of ATP/GTP binding protein (AGBL)-5 and related proteins; Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-5, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human AGBL5 and the mouse cytosolic carboxypeptidase (CCP)-5. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349455 Cd Length: 263 Bit Score: 197.87 E-value: 6.66e-57
|
|||||||||
M14_Nna1-like | cd03856 | Peptidase M14-like domain of ATP/GTP binding proteins, cytosolic carboxypeptidases and related ... |
907-1032 | 2.63e-35 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins, cytosolic carboxypeptidases and related proteins; Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This subfamily includes the human AGTPBP-1 and AGBL -2, -3, -4, and -5, and the mouse Nna1/CCP-1 and CCP -2 through -6. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a characteristic N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349429 Cd Length: 252 Bit Score: 135.40 E-value: 2.63e-35
|
|||||||||
M14_PaCCP-like | cd06234 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases similar ... |
875-1031 | 3.85e-26 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases similar to Pseudomonas aerugnosa CCP (PaCCP); A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP)-like proteins. This subgroup includes PaCCP from Pseudomonas aeruginosa, a carboxypeptidase homologous to M14D subfamily of human CCPs. Structural complexes with well-known inhibitors of metallocarboxypeptidases indicate that PaCCP might only possess C-terminal hydrolase activity against cellular substrates of particular specificity. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349453 [Multi-domain] Cd Length: 256 Bit Score: 108.81 E-value: 3.85e-26
|
|||||||||
MpaA | COG2866 | Murein tripeptide amidase MpaA [Cell wall/membrane/envelope biogenesis]; |
851-986 | 2.08e-18 | |||||
Murein tripeptide amidase MpaA [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442113 [Multi-domain] Cd Length: 337 Bit Score: 88.21 E-value: 2.08e-18
|
|||||||||
M14_Nna1-like | cd18429 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; ... |
912-1018 | 1.99e-17 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; uncharacterized bacterial subgroup; A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP),-like proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349485 Cd Length: 253 Bit Score: 83.28 E-value: 1.99e-17
|
|||||||||
Pepdidase_M14_N | pfam18027 | Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain ... |
713-847 | 1.24e-16 | |||||
Cytosolic carboxypeptidase N-terminal domain; This entry corresponds to the N-terminal domain of cytosolic carboxypeptidases. The N-terminal domain folds into a nine-stranded antiparallel beta sandwich. This domain is specific to CCP proteins and is absent in other carboxypeptidases. It has been hypothesized that the N-terminal domain might contribute to folding, might have a regulatory function and/or might be involved in binding other proteins. Pssm-ID: 407865 Cd Length: 107 Bit Score: 76.55 E-value: 1.24e-16
|
|||||||||
M14_Nna1-like | cd06237 | Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; ... |
910-1027 | 9.21e-16 | |||||
Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; uncharacterized bacterial subgroup; A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP),-like proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. Pssm-ID: 349456 [Multi-domain] Cd Length: 239 Bit Score: 77.99 E-value: 9.21e-16
|
|||||||||
Zn_pept | smart00631 | Zn_pept domain; |
851-1030 | 4.91e-15 | |||||
Zn_pept domain; Pssm-ID: 214748 [Multi-domain] Cd Length: 277 Bit Score: 76.99 E-value: 4.91e-15
|
|||||||||
Peptidase_M14 | pfam00246 | Zinc carboxypeptidase; |
882-983 | 2.26e-07 | |||||
Zinc carboxypeptidase; Pssm-ID: 459730 [Multi-domain] Cd Length: 287 Bit Score: 53.84 E-value: 2.26e-07
|
|||||||||
Peptidase_M14_like | cd00596 | M14 family of metallocarboxypeptidases and related proteins; The M14 family of ... |
914-983 | 7.14e-07 | |||||
M14 family of metallocarboxypeptidases and related proteins; The M14 family of metallocarboxypeptidases (MCPs), also known as funnelins, are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. Pssm-ID: 349427 [Multi-domain] Cd Length: 216 Bit Score: 51.31 E-value: 7.14e-07
|
|||||||||
M14_REP34-like | cd06231 | Peptidase M14-like domain similar to rapid encystment phenotype 34 (REP34); This family ... |
909-1009 | 1.49e-04 | |||||
Peptidase M14-like domain similar to rapid encystment phenotype 34 (REP34); This family includes Francisella tularensis protein rapid encystment phenotype 34 (REP34) which is a zinc-containing monomeric protein demonstrating carboxypeptidase B-like activity. REP34 possesses a novel topology with its substrate binding pocket deviating from the canonical M14 peptidases with a possible catalytic role for a conserved tyrosine and distinct S1' recognition site. Thus, REP34, identified as an active carboxypeptidase and a potential key F. tularensis effector protein, may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. Pssm-ID: 349450 [Multi-domain] Cd Length: 239 Bit Score: 44.61 E-value: 1.49e-04
|
|||||||||
M14-like | cd06239 | Peptidase M14-like domain; uncharacterized subgroup; Peptidase M14-like domain of a ... |
914-981 | 1.89e-03 | |||||
Peptidase M14-like domain; uncharacterized subgroup; Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. Pssm-ID: 349458 [Multi-domain] Cd Length: 194 Bit Score: 40.86 E-value: 1.89e-03
|
|||||||||
M14-CPA-like | cd06227 | Peptidase M14 carboxypeptidase A-like domain; uncharacterized subfamily; A functionally ... |
945-983 | 2.05e-03 | |||||
Peptidase M14 carboxypeptidase A-like domain; uncharacterized subfamily; A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. Pssm-ID: 349446 [Multi-domain] Cd Length: 224 Bit Score: 41.10 E-value: 2.05e-03
|
|||||||||
M14_CP_A-B_like | cd03860 | Peptidase M14 carboxypeptidase subfamily A/B-like; The Peptidase M14 Carboxypeptidase (CP) A/B ... |
909-1018 | 4.00e-03 | |||||
Peptidase M14 carboxypeptidase subfamily A/B-like; The Peptidase M14 Carboxypeptidase (CP) A/B subfamily is one of two main M14 CP subfamilies defined by sequence and structural homology, the other being the N/E subfamily. CPs hydrolyze single, C-terminal amino acids from polypeptide chains. They have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by a globular N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. There are nine members in the A/B family: CPA1, CPA2, CPA3, CPA4, CPA5, CPA6, CPB, CPO and CPU. CPA1, CPA2 and CPB are produced by the pancreas. The A forms have slightly different specificities, with CPA1 preferring aliphatic and small aromatic residues, and CPA2 preferring the bulkier aromatic side chains. CPA3 is found in secretory granules of mast cells and functions in inflammatory processes. CPA4 is detected in hormone-regulated tissues, and is thought to play a role in prostate cancer. CPA5 is present in discrete regions of pituitary and other tissues, and cleaves aliphatic C-terminal residues. CPA6 is highly expressed in embryonic brain and optic muscle, suggesting that it may play a specific role in cell migration and axonal guidance. CPU (also called CPB2) is produced and secreted by the liver as the inactive precursor, PCPU, commonly referred to as thrombin-activatable fibrinolysis inhibitor (TAFI). Little is known about CPO but it has been suggested to have specificity for acidic residues. Pssm-ID: 349433 [Multi-domain] Cd Length: 300 Bit Score: 40.59 E-value: 4.00e-03
|
|||||||||
M14_Endopeptidase_I | cd06229 | Peptidase M14 carboxypeptidase family-like domain of Endopeptidase I; Peptidase M14-like ... |
914-983 | 4.86e-03 | |||||
Peptidase M14 carboxypeptidase family-like domain of Endopeptidase I; Peptidase M14-like domain of Gamma-D-glutamyl-L-diamino acid endopeptidase 1 (also known as Gamma-D-glutamyl-meso-diaminopimelate peptidase I, and Endopeptidase I (ENP1); EC 3.4.19.11). ENP1 is a member of the M14 family of metallocarboxypeptidases (MCPs), and is classified as belonging to subfamily C. However it has an exceptional type of activity of hydrolyzing the gamma-D-Glu-(L)meso-diaminopimelic acid (gamma-D-Glu-Dap) bond of L-Ala-gamma-D-Glu-(L)meso-diaminopimelic acid and L-Ala-gamma-D-Glu-(L)meso-diaminopimelic acid(L)-D-Ala peptides. ENP1 has a different substrate specificity and cellular role than MpaA (MpaA does not belong to this group). ENP1 hydrolyzes the gamma-D-Glu-Dap bond of MurNAc-tripeptide and MurNAc-tetrapeptide, as well as the amide bond of free tripeptide and tetrapeptide. ENP1 is active on spore cortex peptidoglycan, and is produced at stage IV of sporulation in forespore and spore integuments. Pssm-ID: 349448 [Multi-domain] Cd Length: 238 Bit Score: 40.02 E-value: 4.86e-03
|
|||||||||
M14_CP_bacteria | cd18173 | bacterial peptidase M14 carboxypeptidase, uncharacterized; This family contains only bacterial ... |
910-993 | 5.49e-03 | |||||
bacterial peptidase M14 carboxypeptidase, uncharacterized; This family contains only bacterial carboxypeptidase (CP) members of the M14 family of metallocarboxypeptidases (MCPs), mostly of which have yet to be characterized. The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. The N/E subfamily includes eight members, of which five (CPN, CPE, CPM, CPD, CPZ) are considered enzymatically active, while the other three are non-active (CPX1, PCX2, ACLP/AEBP1) and lack the critical active site and substrate-binding residues considered necessary for CP activity. These non-active members may function as binding proteins or display catalytic activity towards other substrates. Unlike the A/B CP subfamily, enzymes belonging to the N/E subfamily are not produced as inactive precursors that require proteolysis to produce the active form; rather, they rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages that would otherwise damage the cell. In addition, all members of the N/E subfamily contain an extra C-terminal domain that is not present in the A/B subfamily. This domain has structural homology to transthyretin and other proteins and has been proposed to function as a folding domain. The active N/E enzymes fulfill a variety of cellular functions, including prohormone processing, regulation of peptide hormone activity, alteration of protein-protein or protein-cell interactions and transcriptional regulation. Pssm-ID: 349483 [Multi-domain] Cd Length: 281 Bit Score: 40.25 E-value: 5.49e-03
|
|||||||||
Blast search parameters | ||||
|