voltage-gated purine nucleotide uniporter SLC17A9 isoform X8 [Rattus norvegicus]
MFS transporter( domain architecture ID 999995)
major facilitator superfamily (MFS) transporter facilitates the transport across cytoplasmic or internal membranes of one or more from a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
MFS super family | cl28910 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
38-286 | 5.46e-92 | |||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. The actual alignment was detected with superfamily member cd17380: Pssm-ID: 475125 [Multi-domain] Cd Length: 361 Bit Score: 277.13 E-value: 5.46e-92
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
MFS_SLC17A9_like | cd17380 | Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of ... |
38-286 | 5.46e-92 | |||||
Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of transporters; This subfamily includes solute carrier family 17 member 9 (SLC17A9) and similar proteins including plant inorganic phosphate transporters (PHT4) that are also probably anion transporters. SLC17A9, also called vesicular nucleotide transporter (VNUT), is involved in vesicular storage and exocytosis of ATP. It facilitates the accumulation of ATP and other nucleotides in secretory vesicles such as adrenal chromaffin granules and synaptic vesicles. It also functions as a lysosomal ATP transporter and regulates cell viability. Plant PHT4 family transporters mediate the transport of inorganic phosphate and may also transport organic anions. The Arabidopsis protein AtPHT4;4 is a chloroplast-localized ascorbate transporter. PHT4 proteins show differential expression that suggests specialized functions. The SLC17A9-like subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340938 [Multi-domain] Cd Length: 361 Bit Score: 277.13 E-value: 5.46e-92
|
|||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
41-279 | 1.35e-29 | |||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 114.82 E-value: 1.35e-29
|
|||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
39-287 | 1.29e-28 | |||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 112.66 E-value: 1.29e-28
|
|||||||||
2A0114 | TIGR00893 | D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, ... |
43-281 | 3.49e-23 | |||||
D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273326 [Multi-domain] Cd Length: 399 Bit Score: 98.18 E-value: 3.49e-23
|
|||||||||
PRK11551 | PRK11551 | putative 3-hydroxyphenylpropionic transporter MhpT; Provisional |
57-274 | 1.85e-12 | |||||
putative 3-hydroxyphenylpropionic transporter MhpT; Provisional Pssm-ID: 236927 [Multi-domain] Cd Length: 406 Bit Score: 66.91 E-value: 1.85e-12
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
MFS_SLC17A9_like | cd17380 | Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of ... |
38-286 | 5.46e-92 | |||||
Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of transporters; This subfamily includes solute carrier family 17 member 9 (SLC17A9) and similar proteins including plant inorganic phosphate transporters (PHT4) that are also probably anion transporters. SLC17A9, also called vesicular nucleotide transporter (VNUT), is involved in vesicular storage and exocytosis of ATP. It facilitates the accumulation of ATP and other nucleotides in secretory vesicles such as adrenal chromaffin granules and synaptic vesicles. It also functions as a lysosomal ATP transporter and regulates cell viability. Plant PHT4 family transporters mediate the transport of inorganic phosphate and may also transport organic anions. The Arabidopsis protein AtPHT4;4 is a chloroplast-localized ascorbate transporter. PHT4 proteins show differential expression that suggests specialized functions. The SLC17A9-like subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340938 [Multi-domain] Cd Length: 361 Bit Score: 277.13 E-value: 5.46e-92
|
|||||||||
MFS_SLC17 | cd17318 | Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The ... |
38-281 | 1.77e-64 | |||||
Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The Solute carrier 17 (SLC17) family is primarily involved in the transport of organic anions. There are nime human proteins belonging to this family including: the type I phosphate transporters (SLC17A1-4) that were initially identified as sodium-dependent inorganic phosphate (Pi) transporters but are now known to be involved in tha transport of organic anions; lysosomal acidic sugar transporter (SLC17A5 or sialin), vesicular glutamate transporters (VGluT1#3 or SLC17A7, SLC17A6, and SLC17A8, respectively), and a vesicular nucleotide transporter (VNUT or SLC17A9). SLC17A1 and SLC17A3 have roles in the transport of urate and para-aminohippurate, respectively. The SLC17 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340876 [Multi-domain] Cd Length: 389 Bit Score: 207.47 E-value: 1.77e-64
|
|||||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
39-284 | 3.89e-30 | |||||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 116.52 E-value: 3.89e-30
|
|||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
41-279 | 1.35e-29 | |||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 114.82 E-value: 1.35e-29
|
|||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
39-287 | 1.29e-28 | |||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 112.66 E-value: 1.29e-28
|
|||||||||
MFS_SLC17A5 | cd17381 | Solute carrier family 17 member 5 (also called sialin) of the Major Facilitator Superfamily of ... |
40-279 | 4.98e-25 | |||||
Solute carrier family 17 member 5 (also called sialin) of the Major Facilitator Superfamily of transporters; Solute carrier family 17 member 5 (SLC17A5) is also called sialin, H(+)/nitrate cotransporter, H(+)/sialic acid cotransporter (AST), membrane glycoprotein HP59, or vesicular H(+)/aspartate-glutamate cotransporter. It transports glucuronic acid and free sialic acid out of the lysosome after its cleavage from sialoglycoconjugates, which is required for normal CNS myelination. It also mediates the membrane potential-dependent uptake of aspartate and glutamate into synaptic vesicles and synaptic-like microvesicles. In the plasma membrane, it functions as a nitrate transporter. Recessive mutations in the SLC17A5 gene cause the allelic disorders, Infantile sialic acid storage disease (ISSD) and Salla disease (a predominantly neurological disorder). SLC17A5 belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340939 [Multi-domain] Cd Length: 397 Bit Score: 103.32 E-value: 4.98e-25
|
|||||||||
2A0114 | TIGR00893 | D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, ... |
43-281 | 3.49e-23 | |||||
D-galactonate transporter; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273326 [Multi-domain] Cd Length: 399 Bit Score: 98.18 E-value: 3.49e-23
|
|||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
61-287 | 5.21e-23 | |||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 96.97 E-value: 5.21e-23
|
|||||||||
MFS_SLC17A6_7_8_VGluT | cd17382 | Solute carrier family 17 members 6, 7, and 8 (also called Vesicular glutamate transporters) of ... |
40-281 | 3.13e-22 | |||||
Solute carrier family 17 members 6, 7, and 8 (also called Vesicular glutamate transporters) of the Major Facilitator Superfamily of transporters; This subfamily is composed of solute carrier family 17 member 6 (SLC17A6), SLC17A7, SLC17A8, and similar proteins. SLC17A6 is also called vesicular glutamate transporter 2 (VGluT2), differentiation-associated BNPI, or differentiation-associated Na(+)-dependent inorganic phosphate cotransporter. SLC17A7 is also called VGluT1 or brain-specific Na(+)-dependent inorganic phosphate cotransporter. SLC17A8 is also called VGluT3. They mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells, and may also mediate the transport of inorganic phosphate. VGluTs are also expressed and localized in various secretory vesicles in non-neuronal peripheral organelles such as hormone-containing secretory granules in endocrine cells, and thus, also act as metabolic regulators. The VGluT subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340940 [Multi-domain] Cd Length: 380 Bit Score: 95.10 E-value: 3.13e-22
|
|||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
35-287 | 7.34e-20 | |||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 88.78 E-value: 7.34e-20
|
|||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
64-287 | 5.38e-18 | |||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 83.01 E-value: 5.38e-18
|
|||||||||
2A0114euk | TIGR00894 | Na(+)-dependent inorganic phosphate cotransporter; [Transport and binding proteins, Anions] |
66-280 | 1.83e-15 | |||||
Na(+)-dependent inorganic phosphate cotransporter; [Transport and binding proteins, Anions] Pssm-ID: 129972 [Multi-domain] Cd Length: 465 Bit Score: 76.32 E-value: 1.83e-15
|
|||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
61-277 | 4.78e-15 | |||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 73.69 E-value: 4.78e-15
|
|||||||||
MFS_OPA_SLC37 | cd17312 | Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of ... |
43-288 | 4.10e-14 | |||||
Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of transporters; Organophosphate:Pi antiporters (OPA) are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA family is also called solute carrier family 37 (SLC37) in vertebrates. Members include glucose-6-phosphate (Glc6P) transporter (also called translocase or exchanger), glycerol-3-phosphate permease, 2-phosphonopropionate transporter, phosphoglycerate transporter, as well as membrane sensor protein UhpC from Escherichia coli. UhpC is both a sensor and a transport protein; it recognizes external Glc6P and induces transport by UhpT, and it can also transport Glc6P. Vertebrates contain four SLC37 or sugar-phosphate exchange (SPX) proteins: SLC37A1 (SPX1), SLC37A2 (SPX2), SLC37A3 (SPX3), and SLC37AA4 (SPX4). The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340870 [Multi-domain] Cd Length: 364 Bit Score: 71.92 E-value: 4.10e-14
|
|||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
62-207 | 9.70e-14 | |||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 70.68 E-value: 9.70e-14
|
|||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
61-284 | 1.41e-13 | |||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 70.27 E-value: 1.41e-13
|
|||||||||
2A0115 | TIGR00895 | benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and ... |
61-280 | 2.56e-13 | |||||
benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273327 [Multi-domain] Cd Length: 398 Bit Score: 69.69 E-value: 2.56e-13
|
|||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
41-288 | 2.64e-13 | |||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 69.38 E-value: 2.64e-13
|
|||||||||
PRK11551 | PRK11551 | putative 3-hydroxyphenylpropionic transporter MhpT; Provisional |
57-274 | 1.85e-12 | |||||
putative 3-hydroxyphenylpropionic transporter MhpT; Provisional Pssm-ID: 236927 [Multi-domain] Cd Length: 406 Bit Score: 66.91 E-value: 1.85e-12
|
|||||||||
MFS_PcaK_like | cd17365 | 4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator ... |
61-207 | 2.13e-11 | |||||
4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator Superfamily; This aromatic acid:H(+) symporter subfamily includes Acinetobacter sp. 4-hydroxybenzoate transporter PcaK, Pseudomonas putida gallate transporter (GalT), Corynebacterium glutamicum gentisate transporter (GenK), Nocardioides sp. 1-hydroxy-2-naphthoate transporter (PhdT), Escherichia coli 3-(3-hydroxy-phenyl)propionate (3HPP) transporter (MhpT), and similar proteins. These transporters are involved in the uptake across the cytoplasmic membrane of specific aromatic compounds such as 4-hydroxybenzoate, gallate, gentisate (2,5-dihydroxybenzoate), 1-hydroxy-2-naphthoate, and 3HPP, respectively. The PcaK-like aromatic acid:H(+) symporter subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340923 [Multi-domain] Cd Length: 351 Bit Score: 63.76 E-value: 2.13e-11
|
|||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
62-207 | 1.01e-10 | |||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 61.81 E-value: 1.01e-10
|
|||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
61-281 | 6.08e-09 | |||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 56.40 E-value: 6.08e-09
|
|||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
36-282 | 1.43e-08 | |||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 55.31 E-value: 1.43e-08
|
|||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
11-180 | 5.22e-08 | |||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 53.58 E-value: 5.22e-08
|
|||||||||
MFS_FEN2_like | cd17327 | Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; ... |
62-284 | 1.06e-07 | |||||
Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; This family is composed of Saccharomyces cerevisiae pantothenate transporter FEN2 (or fenpropimorph resistance protein 2) and similar proteins from fungi and bacteria including fungal vitamin H transporter, allantoate permease, and high-affinity nicotinic acid transporter, as well as Pseudomonas putida phthalate transporter and nicotinate degradation protein T (nicT). These proteins are involved in the uptake into the cell of specific substrates such as pathothenate, biotin, allantoate, and nicotinic acid, among others. The FEN2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340885 [Multi-domain] Cd Length: 406 Bit Score: 52.64 E-value: 1.06e-07
|
|||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
66-214 | 1.12e-07 | |||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 52.58 E-value: 1.12e-07
|
|||||||||
MFS_YcxA_like | cd17355 | MFS-type transporter YcxA and similar proteins of the Major Facilitator Superfamily of ... |
41-263 | 1.20e-07 | |||||
MFS-type transporter YcxA and similar proteins of the Major Facilitator Superfamily of transporters; This group is composed of uncharacterized bacterial MFS-type transporters including Bacillus subtilis YcxA and YbfB. YcxA has been shown to facilitate the export of surfactin in B. subtilis. The YcxA-like group belongs to the Monocarboxylate transporter -like (MCT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340913 [Multi-domain] Cd Length: 386 Bit Score: 52.27 E-value: 1.20e-07
|
|||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
61-277 | 1.64e-07 | |||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 52.18 E-value: 1.64e-07
|
|||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
11-177 | 2.15e-07 | |||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 51.51 E-value: 2.15e-07
|
|||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
73-216 | 5.18e-07 | |||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 50.27 E-value: 5.18e-07
|
|||||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
43-219 | 7.67e-07 | |||||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 50.07 E-value: 7.67e-07
|
|||||||||
MFS_MucK | cd17371 | Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; ... |
61-280 | 8.68e-07 | |||||
Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; This subfamily is composed of Acinetobacter sp. Cis,cis-muconate transport protein (MucK), Escherichia coli putative sialic acid transporter 1, and similar proteins. MucK functions in the uptake of muconate and allows Acinetobacter calcoaceticus ADP1 (BD413) to grow on exogenous cis,cis-muconate as the sole carbon source. The MucK subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340929 [Multi-domain] Cd Length: 389 Bit Score: 49.99 E-value: 8.68e-07
|
|||||||||
MFS_spinster_like | cd17328 | Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; ... |
39-281 | 9.43e-07 | |||||
Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340886 [Multi-domain] Cd Length: 405 Bit Score: 49.54 E-value: 9.43e-07
|
|||||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
73-254 | 9.68e-07 | |||||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 49.57 E-value: 9.68e-07
|
|||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
38-217 | 9.78e-07 | |||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 49.52 E-value: 9.78e-07
|
|||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
61-207 | 2.44e-06 | |||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 48.32 E-value: 2.44e-06
|
|||||||||
MFS_MT3072_like | cd17475 | Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar ... |
56-281 | 2.62e-06 | |||||
Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar transporters of the Major Facilitator Superfamily; This family includes the Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341028 [Multi-domain] Cd Length: 378 Bit Score: 48.39 E-value: 2.62e-06
|
|||||||||
MFS_MdfA_MDR_like | cd17320 | Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major ... |
61-287 | 2.79e-06 | |||||
Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340878 [Multi-domain] Cd Length: 379 Bit Score: 48.34 E-value: 2.79e-06
|
|||||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
18-207 | 3.07e-06 | |||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 47.92 E-value: 3.07e-06
|
|||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
5-214 | 3.18e-06 | |||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 47.93 E-value: 3.18e-06
|
|||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
39-207 | 3.56e-06 | |||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 47.97 E-value: 3.56e-06
|
|||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
11-207 | 5.40e-06 | |||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 47.18 E-value: 5.40e-06
|
|||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
40-207 | 6.31e-06 | |||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 47.22 E-value: 6.31e-06
|
|||||||||
MFS_UhpC | cd17488 | Membrane sensor protein UhpC of the Major Facilitator Superfamily of transporters; Membrane ... |
41-207 | 9.25e-06 | |||||
Membrane sensor protein UhpC of the Major Facilitator Superfamily of transporters; Membrane sensor protein UhpC acts as both a sensor and a transport protein. It is part of the UhpABC signaling cascade that controls the expression of the hexose phosphate transporter UhpT. UhpC recognizes external glucose-6-phosphate (Glc6P) and induces transport by UhpT. It can also transport and sense Glc6P, and interacts with the histidine kinase UhpB, leading to the stimulation of the autokinase activity of UhpB. This group also includes the hexose phosphate transport protein UhpT from Chlamydia pneumoniae; it is a transport protein for sugar phosphate uptake. It is part of the Organophosphate:Pi antiporter (OPA) family of integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The UhpC group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341041 [Multi-domain] Cd Length: 364 Bit Score: 46.63 E-value: 9.25e-06
|
|||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
64-279 | 2.31e-05 | |||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 45.28 E-value: 2.31e-05
|
|||||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
73-216 | 4.14e-05 | |||||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 44.56 E-value: 4.14e-05
|
|||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
37-196 | 4.39e-05 | |||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 44.51 E-value: 4.39e-05
|
|||||||||
MFS_YxlH_like | cd17490 | Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This ... |
8-207 | 1.22e-04 | |||||
Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341043 [Multi-domain] Cd Length: 371 Bit Score: 42.98 E-value: 1.22e-04
|
|||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
62-209 | 1.43e-04 | |||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 42.80 E-value: 1.43e-04
|
|||||||||
MFS_SLC22A18 | cd17331 | Solute carrier family 22 member 18 of the Major Facilitator Superfamily of transporters; ... |
53-210 | 1.86e-04 | |||||
Solute carrier family 22 member 18 of the Major Facilitator Superfamily of transporters; Solute carrier family 22 member 18 (SLC22A18) is also called Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene A protein (BWR1A or BWSCR1A), efflux transporter-like protein, imprinted multi-membrane-spanning polyspecific transporter-related protein 1 (IMPT1), organic cation transporter-like protein 2 (ORCTL2), or tumor-suppressing subchromosomal transferable fragment candidate gene 5 protein (TSSC5). It is localized at the apical membrane surface of renal proximal tubules and may act as an organic cation/proton antiporter. It functions as a tumor suppressor in several cancer types including glioblastoma and colorectal cancer. SLC22A18 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340889 [Multi-domain] Cd Length: 382 Bit Score: 42.59 E-value: 1.86e-04
|
|||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
86-278 | 4.36e-04 | |||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 41.43 E-value: 4.36e-04
|
|||||||||
MFS_YcaD_like | cd17477 | YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of ... |
67-207 | 7.41e-04 | |||||
YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341030 [Multi-domain] Cd Length: 360 Bit Score: 40.62 E-value: 7.41e-04
|
|||||||||
PTR2 | COG3104 | Dipeptide/tripeptide permease [Amino acid transport and metabolism]; |
66-287 | 1.34e-03 | |||||
Dipeptide/tripeptide permease [Amino acid transport and metabolism]; Pssm-ID: 442338 [Multi-domain] Cd Length: 479 Bit Score: 40.18 E-value: 1.34e-03
|
|||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
89-207 | 1.45e-03 | |||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 39.84 E-value: 1.45e-03
|
|||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
73-207 | 1.52e-03 | |||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 39.91 E-value: 1.52e-03
|
|||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
41-214 | 1.71e-03 | |||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 39.48 E-value: 1.71e-03
|
|||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
61-284 | 3.21e-03 | |||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 38.71 E-value: 3.21e-03
|
|||||||||
MFS_FucP_MFSD4_like | cd17333 | Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein ... |
69-200 | 4.84e-03 | |||||
Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4, and similar proteins; This family is composed of bacterial L-fucose permease (FucP), eukaryotic Major facilitator superfamily domain-containing protein 4 (MFSD4) proteins, and similar proteins. L-fucose permease facilitates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell; it can also transport L-galactose and D-arabinose. The MFSD4 subfamily consists of two vertebrate members: MFSD4A and MFSD4B. The function of MFSD4A is unknown. MFSD4B is more commonly know as Sodium-dependent glucose transporter 1 (NaGLT1), a primary fructose transporter in rat renal brush-border membranes that also facilitates sodium-independent urea uptake. The FucP/MFSD4 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340891 [Multi-domain] Cd Length: 372 Bit Score: 38.07 E-value: 4.84e-03
|
|||||||||
MFS_DtpA_like | cd17346 | Dipeptide and tripeptide permease A (DtpA)-like subfamily of the Major Facilitator Superfamily ... |
66-229 | 4.84e-03 | |||||
Dipeptide and tripeptide permease A (DtpA)-like subfamily of the Major Facilitator Superfamily of transporters; The DtpA-like subfamily includes four Escherichia coli proteins: dipeptide and tripeptide permeases A (DtpA, TppB or YdgR), B (DtpB or YhiP), C (DtpC or YjdL), and D (DtpD or YbgH). They are proton-dependent permeases that transport di- and tripeptides. DtpA and DtpB display a preference for di- and tripeptides composed of L-amino acids. DtpC shows higher specificity for dipeptides compared to tripeptides, and prefers dipeptides containing a C-terminal lysine residue. The DtpA-like subfamily belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340904 [Multi-domain] Cd Length: 399 Bit Score: 38.33 E-value: 4.84e-03
|
|||||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
3-207 | 5.04e-03 | |||||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 37.92 E-value: 5.04e-03
|
|||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
61-283 | 5.10e-03 | |||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 37.94 E-value: 5.10e-03
|
|||||||||
PRK12382 | PRK12382 | putative transporter; Provisional |
65-207 | 6.05e-03 | |||||
putative transporter; Provisional Pssm-ID: 183487 [Multi-domain] Cd Length: 392 Bit Score: 37.73 E-value: 6.05e-03
|
|||||||||
Blast search parameters | ||||
|