1-phosphatidylinositol 3-phosphate 5-kinase isoform X12 [Rattus norvegicus]
1-phosphatidylinositol-3-phosphate 5-kinase( domain architecture ID 13066872)
1-phosphatidylinositol-3-phosphate 5-kinase is part of a complex that is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] by catalyzing the phosphorylation of phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) on the fifth hydroxyl of the myo-inositol ring
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PIPKc_PIKfyve | cd17300 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in ... |
1032-1298 | 1.63e-156 | |||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in 1-phosphatidylinositol-3-phosphate 5-kinase and similar proteins; 1-phosphatidylinositol-3-phosphate 5-kinase (EC 2.7.1.150) is also called FYVE finger-containing phosphoinositide kinase, PIKfyve, phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase). It forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] by catalyzing the phosphorylation of phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) on the fifth hydroxyl of the myo-inositol ring. Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. PIKfyve is vital in early embryonic development. It forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, playing a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human Ether-a-go-go-Related Gene (hERG) channels. This family also includes the yeast ortholog of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal catalytic lipid kinase domain related to PtdInsP kinases (or the PIPKc domain). : Pssm-ID: 340437 Cd Length: 262 Bit Score: 470.07 E-value: 1.63e-156
|
|||||||||
chaperonin_like super family | cl02777 | chaperonin_like superfamily. Chaperonins are involved in productive folding of proteins. They ... |
1-92 | 1.31e-41 | |||||
chaperonin_like superfamily. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. There are 2 main chaperonin groups. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). The symmetry of type II is eight- or nine-fold and they are found in archea (thermosome), thermophilic bacteria (TF55) and in the eukaryotic cytosol (CTT). Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. This superfamily also contains related domains from Fab1-like phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinases that only contain the intermediate and apical domains. The actual alignment was detected with superfamily member cd03334: Pssm-ID: 351886 [Multi-domain] Cd Length: 261 Bit Score: 153.92 E-value: 1.31e-41
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
PIPKc_PIKfyve | cd17300 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in ... |
1032-1298 | 1.63e-156 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in 1-phosphatidylinositol-3-phosphate 5-kinase and similar proteins; 1-phosphatidylinositol-3-phosphate 5-kinase (EC 2.7.1.150) is also called FYVE finger-containing phosphoinositide kinase, PIKfyve, phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase). It forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] by catalyzing the phosphorylation of phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) on the fifth hydroxyl of the myo-inositol ring. Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. PIKfyve is vital in early embryonic development. It forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, playing a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human Ether-a-go-go-Related Gene (hERG) channels. This family also includes the yeast ortholog of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal catalytic lipid kinase domain related to PtdInsP kinases (or the PIPKc domain). Pssm-ID: 340437 Cd Length: 262 Bit Score: 470.07 E-value: 1.63e-156
|
||||||||||
PIPKc | smart00330 | Phosphatidylinositol phosphate kinases; |
1005-1298 | 4.59e-105 | ||||||
Phosphatidylinositol phosphate kinases; Pssm-ID: 214623 [Multi-domain] Cd Length: 342 Bit Score: 336.28 E-value: 4.59e-105
|
||||||||||
MSS4 | COG5253 | Phosphatidylinositol-4-phosphate 5-kinase [Signal transduction mechanisms]; |
1016-1307 | 3.12e-66 | ||||||
Phosphatidylinositol-4-phosphate 5-kinase [Signal transduction mechanisms]; Pssm-ID: 227578 [Multi-domain] Cd Length: 612 Bit Score: 236.38 E-value: 3.12e-66
|
||||||||||
PIP5K | pfam01504 | Phosphatidylinositol-4-phosphate 5-Kinase; This family contains a region from the common ... |
1074-1297 | 9.27e-50 | ||||||
Phosphatidylinositol-4-phosphate 5-Kinase; This family contains a region from the common kinase core found in the type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K) family as described in. The family consists of various type I, II and III PIP5K enzymes. PIP5K catalyzes the formation of phosphoinositol-4,5-bisphosphate via the phosphorylation of phosphatidylinositol-4-phosphate a precursor in the phosphinositide signaling pathway. Pssm-ID: 460234 Cd Length: 227 Bit Score: 176.12 E-value: 9.27e-50
|
||||||||||
Fab1_TCP | cd03334 | TCP-1 like domain of the eukaryotic phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinase Fab1. ... |
1-92 | 1.31e-41 | ||||||
TCP-1 like domain of the eukaryotic phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinase Fab1. Fab1p is important for vacuole size regulation, presumably by modulating PtdIns(3,5)P2 effector activity. In the human homolog p235/PIKfyve deletion of this domain leads to loss of catalytic activity. However no exact function this domain has been defined. In general, chaperonins are involved in productive folding of proteins. Pssm-ID: 239450 [Multi-domain] Cd Length: 261 Bit Score: 153.92 E-value: 1.31e-41
|
||||||||||
PLN03185 | PLN03185 | phosphatidylinositol phosphate kinase; Provisional |
1017-1236 | 3.58e-19 | ||||||
phosphatidylinositol phosphate kinase; Provisional Pssm-ID: 215619 [Multi-domain] Cd Length: 765 Bit Score: 93.74 E-value: 3.58e-19
|
||||||||||
Cpn60_TCP1 | pfam00118 | TCP-1/cpn60 chaperonin family; This family includes members from the HSP60 chaperone family ... |
1-71 | 4.73e-05 | ||||||
TCP-1/cpn60 chaperonin family; This family includes members from the HSP60 chaperone family and the TCP-1 (T-complex protein) family. Pssm-ID: 395068 [Multi-domain] Cd Length: 489 Bit Score: 47.58 E-value: 4.73e-05
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PIPKc_PIKfyve | cd17300 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in ... |
1032-1298 | 1.63e-156 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in 1-phosphatidylinositol-3-phosphate 5-kinase and similar proteins; 1-phosphatidylinositol-3-phosphate 5-kinase (EC 2.7.1.150) is also called FYVE finger-containing phosphoinositide kinase, PIKfyve, phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase). It forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] by catalyzing the phosphorylation of phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) on the fifth hydroxyl of the myo-inositol ring. Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. PIKfyve is vital in early embryonic development. It forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, playing a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human Ether-a-go-go-Related Gene (hERG) channels. This family also includes the yeast ortholog of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal catalytic lipid kinase domain related to PtdInsP kinases (or the PIPKc domain). Pssm-ID: 340437 Cd Length: 262 Bit Score: 470.07 E-value: 1.63e-156
|
||||||||||
PIPKc | smart00330 | Phosphatidylinositol phosphate kinases; |
1005-1298 | 4.59e-105 | ||||||
Phosphatidylinositol phosphate kinases; Pssm-ID: 214623 [Multi-domain] Cd Length: 342 Bit Score: 336.28 E-value: 4.59e-105
|
||||||||||
PIPKc | cd00139 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family; The Phosphatidylinositol ... |
1033-1296 | 1.19e-69 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family; The Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family includes phosphatidylinositol 5-phosphate 4-kinases (PIP5Ks) and similar proteins. PIP5Ks catalyze the phosphorylation of phosphatidylinositol phosphate on the fourth or fifth hydroxyl of the inositol ring, to form phosphatidylinositol bisphosphate. The family includes type I and II PIP5Ks (-alpha, -beta, and -gamma) kinases. Signalling by phosphorylated species of phosphatidylinositol regulates secretion, vesicular trafficking, membrane translocation, cell adhesion, chemotaxis, DNA synthesis, and cell cycling. Pssm-ID: 340436 Cd Length: 253 Bit Score: 234.00 E-value: 1.19e-69
|
||||||||||
MSS4 | COG5253 | Phosphatidylinositol-4-phosphate 5-kinase [Signal transduction mechanisms]; |
1016-1307 | 3.12e-66 | ||||||
Phosphatidylinositol-4-phosphate 5-kinase [Signal transduction mechanisms]; Pssm-ID: 227578 [Multi-domain] Cd Length: 612 Bit Score: 236.38 E-value: 3.12e-66
|
||||||||||
PIP5K | pfam01504 | Phosphatidylinositol-4-phosphate 5-Kinase; This family contains a region from the common ... |
1074-1297 | 9.27e-50 | ||||||
Phosphatidylinositol-4-phosphate 5-Kinase; This family contains a region from the common kinase core found in the type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K) family as described in. The family consists of various type I, II and III PIP5K enzymes. PIP5K catalyzes the formation of phosphoinositol-4,5-bisphosphate via the phosphorylation of phosphatidylinositol-4-phosphate a precursor in the phosphinositide signaling pathway. Pssm-ID: 460234 Cd Length: 227 Bit Score: 176.12 E-value: 9.27e-50
|
||||||||||
Fab1_TCP | cd03334 | TCP-1 like domain of the eukaryotic phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinase Fab1. ... |
1-92 | 1.31e-41 | ||||||
TCP-1 like domain of the eukaryotic phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinase Fab1. Fab1p is important for vacuole size regulation, presumably by modulating PtdIns(3,5)P2 effector activity. In the human homolog p235/PIKfyve deletion of this domain leads to loss of catalytic activity. However no exact function this domain has been defined. In general, chaperonins are involved in productive folding of proteins. Pssm-ID: 239450 [Multi-domain] Cd Length: 261 Bit Score: 153.92 E-value: 1.31e-41
|
||||||||||
PIPKc_AtPIP5K_like | cd17302 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Arabidopsis thaliana ... |
987-1296 | 1.30e-28 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Arabidopsis thaliana phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) and similar proteins; PIP5K (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase, or diphosphoinositide kinase, phosphorylates phosphatidylinositol-4-phosphate to produce phosphatidylinositol-4,5-bisphosphate as a precursor of two second messengers, inositol-1,4,5-triphosphate and diacylglycerol, and as a regulator of many cellular proteins involved in signal transduction and cytoskeletal organization. The family includes several PIP5Ks from Arabidopsis thaliana. AtPIP5K1 is involved in water-stress signal transduction. AtPIP5K2 acts as an interactor of all five Arabidopsis RAB-E proteins but not with other Rab subclasses residing at the Golgi or trans-Golgi network. AtPIP5K3 is a key regulator of root hair tip growth. AtPIP5K4 and AtPIP5K5 are type B PI4P 5-kinases expressed in pollen and have important functions in pollen germination and in pollen tube growth. AtPIP5K6 regulates clathrin-dependent endocytosis in pollen tubes. AtPIP5K9 interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Pssm-ID: 340439 Cd Length: 314 Bit Score: 117.78 E-value: 1.30e-28
|
||||||||||
PIPKc_PIP5KL1 | cd17304 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol ... |
1039-1295 | 3.03e-28 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase-like protein 1 (PIP5KL1) and similar proteins; PIP5KL1 (EC 2.7.1.68), also known as PI(4)P 5-kinase-like protein 1, or PtdIns(4)P-5-kinase-like protein 1, may act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment, and conversion to PI(3,4,5)P3. Pssm-ID: 340441 Cd Length: 319 Bit Score: 117.07 E-value: 3.03e-28
|
||||||||||
PIPKc_PIP5KII | cd17305 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type II ... |
1033-1296 | 2.90e-24 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type II phosphatidylinositol 5-phosphate 4-kinase (PIP5KII) and similar proteins; PIP5KIIs, also known as PIPKIIs, or PI4P5KIIs, are responsible for the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2), an essential lipid molecule in various cellular processes, from phosphatidylinositol-5-phosphate (PtdIns5P). Three distinct PIP5KIs have been characterized in erythrocytes, PIP5K2A, PIP5K2B, and PIP5K2C isoforms. Pssm-ID: 340442 Cd Length: 300 Bit Score: 104.66 E-value: 2.90e-24
|
||||||||||
PIPKc_PIP5K_yeast_like | cd17303 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in yeast ... |
1040-1296 | 3.64e-24 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in yeast phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) and similar proteins; PIP5K (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase, or diphosphoinositide kinase, phosphorylates phosphatidylinositol-4-phosphate to produce phosphatidylinositol-4,5-bisphosphate as a precursor of two second messengers, inositol-1,4,5-triphosphate and diacylglycerol, and as a regulator of many cellular proteins involved in signal transduction and cytoskeletal organization. The family includes Saccharomyces cerevisiae PIP5K MSS4, Schizosaccharomyces pombe PIP5K Its3. MSS4 is required for organization of the actin cytoskeleton in budding yeast. Its3 is involved, together with the calcineurin ppb1, in cytokinesis of fission yeast. Pssm-ID: 340440 Cd Length: 318 Bit Score: 105.07 E-value: 3.64e-24
|
||||||||||
PIPKc_PIP5KI | cd17301 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type I ... |
1044-1294 | 1.52e-22 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5KI) and similar proteins; PIP5KIs, also known as PIPKIs, or PI4P5KIs, phosphorylate the head group of phosphatidylinositol 4-phosphate (PtdIns4P) to generate phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2), an essential lipid molecule in various cellular processes. Three distinct PIP5KIs have been characterized in erythrocytes, PIP5K1alpha, PIP5K1beta, and PIP5K1gamma isoforms. Pssm-ID: 340438 Cd Length: 320 Bit Score: 100.01 E-value: 1.52e-22
|
||||||||||
PLN03185 | PLN03185 | phosphatidylinositol phosphate kinase; Provisional |
1017-1236 | 3.58e-19 | ||||||
phosphatidylinositol phosphate kinase; Provisional Pssm-ID: 215619 [Multi-domain] Cd Length: 765 Bit Score: 93.74 E-value: 3.58e-19
|
||||||||||
PIPKc_PIP5K2B | cd17310 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol ... |
1033-1294 | 3.30e-18 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (PIP5K2B) and similar proteins; PIP5K2B (EC 2.7.1.149), also known as 1-phosphatidylinositol 5-phosphate 4-kinase 2-beta, or diphosphoinositide kinase 2-beta, or phosphatidylinositol 5-phosphate 4-kinase type II beta, or PI(5)P 4-kinase type II beta, or PIP4KII-beta, or PtdIns(5)P-4-kinase isoform 2-beta, or PIP5KIIbeta, or PIP4K2B, participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate. It directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate (PtdIns(4,5)P2), one of the key metabolic crossroads in phosphoinositide signaling. It regulates the levels of nuclear PtdIns5P, which in turn modulates the acetylation of the tumour suppressor p53. It also interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Moreover, PIP5K2B is a molecular sensor that transduces changes in GTP into changes in the levels of the phosphoinositide PtdIns5P to modulate tumour cell growth. Pssm-ID: 340447 Cd Length: 311 Bit Score: 87.03 E-value: 3.30e-18
|
||||||||||
PIPKc_PIP5K2A | cd17309 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol ... |
1033-1290 | 1.45e-17 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha (PIP5K2A) and similar proteins; PIP5K2A (EC 2.7.1.149), also known as PIP4K2A, or 1-phosphatidylinositol 5-phosphate 4-kinase 2-alpha, or diphosphoinositide kinase 2-alpha, or PIP5KIII, or phosphatidylinositol 5-phosphate 4-kinase type II alpha, or PI(5)P 4-kinase type II alpha, or PIP4KII-alpha, or PtdIns(4)P-5-kinase C isoform, or PtdIns(5)P-4-kinase isoform 2-alpha, catalyzes the phosphorylation of phosphatidylinositol 5-phosphate (PtdIns5P) on the fourth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), one of the key metabolic crossroads in phosphoinositide signaling. It is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. PIP5K2A is associated with schizophrenia. It controls the function of KCNQ channels via phosphatidylinositol-4,5-bisphosphate (PIP2) synthesis, and plays a potential role in the regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. Pssm-ID: 340446 Cd Length: 309 Bit Score: 85.03 E-value: 1.45e-17
|
||||||||||
PIPKc_PIP5K2C | cd17311 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol ... |
1044-1292 | 2.97e-17 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (PIP5K2C) and similar proteins; PIP5K2C (EC 2.7.1.149), also known as 1-phosphatidylinositol 5-phosphate 4-kinase 2-gamma, or PI5P4Kgamma, or diphosphoinositide kinase 2-gamma, or phosphatidylinositol 5-phosphate 4-kinase type II gamma, or PI(5)P 4-kinase type II gamma, or PIP4KII-gamma, or PIP4K2C, may play an important role in the production of phosphatidylinositol bisphosphate (PIP2) in the endoplasmic reticulum. It contributes to the development and maintenance of epithelial cell functional polarity. It also plays a role in the regulation of the immune system via mTORC1 signaling. Moreover, PIP5K2C is involved in arsenic trioxide (ATO) cytotoxicity. It mediates PIP2 generation required for positioning and assembly of bipolar spindles and alteration of PIP5K2C function by ATO may thus lead to spindle abnormalities. Pssm-ID: 340448 Cd Length: 298 Bit Score: 84.15 E-value: 2.97e-17
|
||||||||||
PIPKc_PIP5K1B | cd17307 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol ... |
1013-1295 | 3.04e-17 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 beta (PIP5K1beta) and similar proteins; PIP5K1beta (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase 1 beta, or protein STM-7, or PIP5K1B, is encoded by the Friedreich's ataxia (FRDA) gene, STM7. FRDA is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus, and/or glucose intolerance. PIP5K1beta is an enzyme functionally linked to actin cytoskeleton dynamics and it phosphorylates phosphatidylinositol 4-phosphate (PtdIns4P) to generate phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). Pssm-ID: 340444 Cd Length: 321 Bit Score: 84.27 E-value: 3.04e-17
|
||||||||||
chaperonin_like | cd03333 | chaperonin_like superfamily. Chaperonins are involved in productive folding of proteins. They ... |
2-84 | 8.59e-16 | ||||||
chaperonin_like superfamily. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. There are 2 main chaperonin groups. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). The symmetry of type II is eight- or nine-fold and they are found in archea (thermosome), thermophilic bacteria (TF55) and in the eukaryotic cytosol (CTT). Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. This superfamily also contains related domains from Fab1-like phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinases that only contain the intermediate and apical domains. Pssm-ID: 239449 [Multi-domain] Cd Length: 209 Bit Score: 77.51 E-value: 8.59e-16
|
||||||||||
PIPKc_PIP5K1C | cd17308 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol ... |
1013-1294 | 9.82e-16 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) and similar proteins; PIP5K1gamma(EC 2.7.1.68), also known as PtdIns(4)P-5-kinase 1 gamma, or PIP5K1gamma, or PIPKIgamma, or PtdInsPKI gamma, is a phosphatidylinositol-4-phosphate 5-kinase that catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is involved in a variety of cellular processes and is the substrate to form phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), another second messenger. PIP5K1gamma is required for epidermal growth factor (EGF)-stimulated directional cell migration. It also modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. Pssm-ID: 340445 Cd Length: 323 Bit Score: 80.04 E-value: 9.82e-16
|
||||||||||
PIPKc_PIP5K1A_like | cd17306 | Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol ... |
1034-1294 | 1.38e-12 | ||||||
Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1alpha) and similar proteins; PIP5K1alpha (EC 2.7.1.68), also termed PIP5K1A, or PtdIns(4)P-5-kinase 1 alpha, or 68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha, or PIPKI-alpha, catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). It mediates extracellular calcium-induced keratinocyte differentiation. Unlike other type I phosphatidylinositol-4-phosphate 5-kinase (PIPKI) isoforms, PIP5K1alpha regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. This function is independent of its catalytic activity, and requires physical interaction of PIP5K1alpha with the Rac1 polybasic domain. The family also includes testis-specific PIP5K1A and PSMD4-like protein, also known as PIP5K1A-PSMD4 or PIPSL. It has negligeable PIP5 kinase activity and binds to ubiquitinated proteins. Pssm-ID: 340443 Cd Length: 339 Bit Score: 70.80 E-value: 1.38e-12
|
||||||||||
Cpn60_TCP1 | pfam00118 | TCP-1/cpn60 chaperonin family; This family includes members from the HSP60 chaperone family ... |
1-71 | 4.73e-05 | ||||||
TCP-1/cpn60 chaperonin family; This family includes members from the HSP60 chaperone family and the TCP-1 (T-complex protein) family. Pssm-ID: 395068 [Multi-domain] Cd Length: 489 Bit Score: 47.58 E-value: 4.73e-05
|
||||||||||
TCP1_eta | cd03340 | TCP-1 (CTT or eukaryotic type II) chaperonin family, eta subunit. Chaperonins are involved in ... |
14-61 | 8.50e-03 | ||||||
TCP-1 (CTT or eukaryotic type II) chaperonin family, eta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. Pssm-ID: 239456 [Multi-domain] Cd Length: 522 Bit Score: 40.35 E-value: 8.50e-03
|
||||||||||
chaperonin_type_I_II | cd00309 | chaperonin families, type I and type II. Chaperonins are involved in productive folding of ... |
7-68 | 9.56e-03 | ||||||
chaperonin families, type I and type II. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. There are 2 main chaperonin groups. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). The symmetry of type II is eight- or nine-fold and they are found in archea (thermosome), thermophilic bacteria (TF55) and in the eukaryotic cytosol (CTT). Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. Pssm-ID: 238189 Cd Length: 464 Bit Score: 40.10 E-value: 9.56e-03
|
||||||||||
Blast search parameters | ||||
|