serine/threonine-protein kinase LMTK3 isoform X5 [Mus musculus]
protein kinase family protein( domain architecture ID 1904492)
protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
34-179 | 3.14e-100 | ||||||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd14206: Pssm-ID: 473864 [Multi-domain] Cd Length: 276 Bit Score: 319.20 E-value: 3.14e-100
|
||||||||||
SPS1 super family | cl43163 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
40-399 | 2.11e-08 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; The actual alignment was detected with superfamily member COG0515: Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 58.10 E-value: 2.11e-08
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PTKc_Aatyk3 | cd14206 | Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs ... |
34-179 | 3.14e-100 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk3, also called lemur tyrosine kinase 3 (Lmtk3) is a receptor kinase containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. The function of Aatyk3 is still unknown. The Aatyk3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271108 [Multi-domain] Cd Length: 276 Bit Score: 319.20 E-value: 3.14e-100
|
||||||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
35-177 | 2.18e-35 | ||||||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 135.70 E-value: 2.18e-35
|
||||||||||
STYKc | smart00221 | Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ... |
35-177 | 4.52e-35 | ||||||
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase. Pssm-ID: 214568 [Multi-domain] Cd Length: 258 Bit Score: 134.60 E-value: 4.52e-35
|
||||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
40-399 | 2.11e-08 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 58.10 E-value: 2.11e-08
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PTKc_Aatyk3 | cd14206 | Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs ... |
34-179 | 3.14e-100 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk3, also called lemur tyrosine kinase 3 (Lmtk3) is a receptor kinase containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. The function of Aatyk3 is still unknown. The Aatyk3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271108 [Multi-domain] Cd Length: 276 Bit Score: 319.20 E-value: 3.14e-100
|
||||||||||
PTKc_Aatyk | cd05042 | Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinases; PTKs ... |
34-179 | 5.64e-93 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Aatyk subfamily is also referred to as the lemur tyrosine kinase (Lmtk) subfamily. It consists of Aatyk1 (Lmtk1), Aatyk2 (Lmtk2, Brek), Aatyk3 (Lmtk3), and similar proteins. Aatyk proteins are mostly receptor PTKs (RTKs) containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk1 does not contain a transmembrane segment and is a cytoplasmic (or nonreceptor) kinase. Aatyk proteins are classified as PTKs based on overall sequence similarity and the phylogenetic tree. However, analysis of catalytic residues suggests that Aatyk proteins may be multispecific kinases, functioning also as serine/threonine kinases. They are involved in neural differentiation, nerve growth factor (NGF) signaling, apoptosis, and spermatogenesis. The Aatyk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270638 [Multi-domain] Cd Length: 269 Bit Score: 299.12 E-value: 5.64e-93
|
||||||||||
PTKc_Aatyk1 | cd05087 | Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 1; PTKs ... |
34-179 | 5.89e-72 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk1 (or simply Aatyk) is also called lemur tyrosine kinase 1 (Lmtk1). It is a cytoplasmic (or nonreceptor) kinase containing a long C-terminal region. The expression of Aatyk1 is upregulated during growth arrest and apoptosis in myeloid cells. Aatyk1 has been implicated in neural differentiation, and is a regulator of the Na-K-2Cl cotransporter, a membrane protein involved in cell proliferation and survival, epithelial transport, and blood pressure control. The Aatyk1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270670 [Multi-domain] Cd Length: 271 Bit Score: 241.05 E-value: 5.89e-72
|
||||||||||
PTKc_Aatyk2 | cd05086 | Catalytic domain of the Protein Tyrosine Kinase, Apoptosis-associated tyrosine kinase 2; PTKs ... |
34-179 | 1.35e-63 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Apoptosis-associated tyrosine kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk2 is a member of the Aatyk subfamily of proteins, which are receptor kinases containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk2 is also called lemur tyrosine kinase 2 (Lmtk2) or brain-enriched kinase (Brek). It is expressed at high levels in early postnatal brain, and has been shown to play a role in nerve growth factor (NGF) signaling. Studies with knockout mice reveal that Aatyk2 is essential for late stage spermatogenesis. Although it is classified as a PTK based on sequence similarity and the phylogenetic tree, Aatyk2 has been functionally characterized as a serine/threonine kinase. The Aatyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270669 [Multi-domain] Cd Length: 271 Bit Score: 217.43 E-value: 1.35e-63
|
||||||||||
PTKc | cd00192 | Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the ... |
35-178 | 1.96e-39 | ||||||
Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. They can be classified into receptor and non-receptor tyr kinases. PTKs play important roles in many cellular processes including, lymphocyte activation, epithelium growth and maintenance, metabolism control, organogenesis regulation, survival, proliferation, differentiation, migration, adhesion, motility, and morphogenesis. Receptor tyr kinases (RTKs) are integral membrane proteins which contain an extracellular ligand-binding region, a transmembrane segment, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain, leading to intracellular signaling. Some RTKs are orphan receptors with no known ligands. Non-receptor (or cytoplasmic) tyr kinases are distributed in different intracellular compartments and are usually multi-domain proteins containing a catalytic tyr kinase domain as well as various regulatory domains such as SH3 and SH2. PTKs are usually autoinhibited and require a mechanism for activation. In many PTKs, the phosphorylation of tyr residues in the activation loop is essential for optimal activity. Aberrant expression of PTKs is associated with many development abnormalities and cancers.The PTK family is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270623 [Multi-domain] Cd Length: 262 Bit Score: 147.69 E-value: 1.96e-39
|
||||||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
35-177 | 2.18e-35 | ||||||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 135.70 E-value: 2.18e-35
|
||||||||||
STYKc | smart00221 | Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ... |
35-177 | 4.52e-35 | ||||||
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase. Pssm-ID: 214568 [Multi-domain] Cd Length: 258 Bit Score: 134.60 E-value: 4.52e-35
|
||||||||||
TyrKc | smart00219 | Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. |
35-177 | 1.05e-34 | ||||||
Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. Pssm-ID: 197581 [Multi-domain] Cd Length: 257 Bit Score: 133.81 E-value: 1.05e-34
|
||||||||||
PTKc_InsR_like | cd05032 | Catalytic domain of Insulin Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer ... |
35-173 | 2.47e-32 | ||||||
Catalytic domain of Insulin Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The InsR subfamily is composed of InsR, Insulin-like Growth Factor-1 Receptor (IGF-1R), and similar proteins. InsR and IGF-1R are receptor PTKs (RTKs) composed of two alphabeta heterodimers. Binding of the ligand (insulin, IGF-1, or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR and IGF-1R, which share 84% sequence identity in their kinase domains, display physiologically distinct yet overlapping functions in cell growth, differentiation, and metabolism. InsR activation leads primarily to metabolic effects while IGF-1R activation stimulates mitogenic pathways. In cells expressing both receptors, InsR/IGF-1R hybrids are found together with classical receptors. Both receptors can interact with common adaptor molecules such as IRS-1 and IRS-2. The InsR-like subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173625 [Multi-domain] Cd Length: 277 Bit Score: 127.46 E-value: 2.47e-32
|
||||||||||
PTKc_TrkA | cd05092 | Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase A; PTKs catalyze ... |
35-177 | 3.56e-29 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase A; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkA is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkA to its ligand, nerve growth factor (NGF), results in receptor oligomerization and activation of the catalytic domain. TrkA is expressed mainly in neural-crest-derived sensory and sympathetic neurons of the peripheral nervous system, and in basal forebrain cholinergic neurons of the central nervous system. It is critical for neuronal growth, differentiation and survival. Alternative TrkA splicing has been implicated as a pivotal regulator of neuroblastoma (NB) behavior. Normal TrkA expression is associated with better NB prognosis, while the hypoxia-regulated TrkAIII splice variant promotes NB pathogenesis and progression. Aberrant TrkA expression has also been demonstrated in non-neural tumors including prostate, breast, lung, and pancreatic cancers. The TrkA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270674 [Multi-domain] Cd Length: 280 Bit Score: 118.53 E-value: 3.56e-29
|
||||||||||
PTKc_c-ros | cd05044 | Catalytic domain of the Protein Tyrosine Kinase, C-ros; PTKs catalyze the transfer of the ... |
35-177 | 4.75e-29 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, C-ros; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily contains c-ros, Sevenless, and similar proteins. The proto-oncogene c-ros encodes an orphan receptor PTK (RTK) with an unknown ligand. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. C-ros is expressed in embryonic cells of the kidney, intestine and lung, but disappears soon after birth. It persists only in the adult epididymis. Male mice bearing inactive mutations of c-ros lack the initial segment of the epididymis and are infertile. The Drosophila protein, Sevenless, is required for the specification of the R7 photoreceptor cell during eye development. The c-ros subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270640 [Multi-domain] Cd Length: 268 Bit Score: 117.52 E-value: 4.75e-29
|
||||||||||
PTKc_Trk | cd05049 | Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze ... |
35-177 | 1.09e-28 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Trk subfamily consists of TrkA, TrkB, TrkC, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, the nerve growth factor (NGF) family of neutrotrophins, leads to Trk receptor oligomerization and activation of the catalytic domain. Trk receptors are mainly expressed in the peripheral and central nervous systems. They play important roles in cell fate determination, neuronal survival and differentiation, as well as in the regulation of synaptic plasticity. Altered expression of Trk receptors is associated with many human diseases. The Trk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270643 [Multi-domain] Cd Length: 280 Bit Score: 117.18 E-value: 1.09e-28
|
||||||||||
PTK_CCK4 | cd05046 | Pseudokinase domain of the Protein Tyrosine Kinase, Colon Carcinoma Kinase 4; CCK4, also ... |
35-173 | 2.14e-28 | ||||||
Pseudokinase domain of the Protein Tyrosine Kinase, Colon Carcinoma Kinase 4; CCK4, also called protein tyrosine kinase 7 (PTK7), is an orphan receptor PTK (RTK) containing an extracellular region with seven immunoglobulin domains, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. Studies in mice reveal that CCK4 is essential for neural development. Mouse embryos containing a truncated CCK4 die perinatally and display craniorachischisis, a severe form of neural tube defect. The mechanism of action of the CCK4 pseudokinase is still unknown. Other pseudokinases such as HER3 rely on the activity of partner RTKs. The CCK4 subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133178 [Multi-domain] Cd Length: 275 Bit Score: 116.02 E-value: 2.14e-28
|
||||||||||
PTKc_Ror | cd05048 | Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan ... |
35-177 | 1.59e-27 | ||||||
Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Ror subfamily consists of Ror1, Ror2, and similar proteins. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. Ror kinases are expressed in many tissues during development. They play important roles in bone and heart formation. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Drosophila Ror is expressed only in the developing nervous system during neurite outgrowth and neuronal differentiation, suggesting a role for Drosophila Ror in neural development. More recently, mouse Ror1 and Ror2 have also been found to play an important role in regulating neurite growth in central neurons. Ror1 and Ror2 are believed to have some overlapping and redundant functions. The Ror subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270642 [Multi-domain] Cd Length: 283 Bit Score: 113.62 E-value: 1.59e-27
|
||||||||||
PTKc_Musk | cd05050 | Catalytic domain of the Protein Tyrosine Kinase, Muscle-specific kinase; PTKs catalyze the ... |
35-173 | 5.87e-27 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Muscle-specific kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Musk is a receptor PTK (RTK) containing an extracellular region with four immunoglobulin-like domains and a cysteine-rich cluster, a transmembrane segment, and an intracellular catalytic domain. Musk is expressed and concentrated in the postsynaptic membrane in skeletal muscle. It is essential for the establishment of the neuromuscular junction (NMJ), a peripheral synapse that conveys signals from motor neurons to muscle cells. Agrin, a large proteoglycan released from motor neurons, stimulates Musk autophosphorylation and activation, leading to the clustering of acetylcholine receptors (AChRs). To date, there is no evidence to suggest that agrin binds directly to Musk. Mutations in AChR, Musk and other partners are responsible for diseases of the NMJ, such as the autoimmune syndrome myasthenia gravis. The Musk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133181 [Multi-domain] Cd Length: 288 Bit Score: 112.23 E-value: 5.87e-27
|
||||||||||
PTKc_DDR | cd05051 | Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze ... |
35-178 | 1.88e-26 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The DDR subfamily consists of homologs of mammalian DDR1, DDR2, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270644 [Multi-domain] Cd Length: 297 Bit Score: 110.89 E-value: 1.88e-26
|
||||||||||
PTKc_Syk_like | cd05060 | Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
35-177 | 3.90e-24 | ||||||
Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Syk-like subfamily is composed of Syk, ZAP-70, Shark, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. They are involved in the signaling downstream of activated receptors (including B-cell, T-cell, and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. Syk is important in B-cell receptor signaling, while Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor signaling. Syk also plays a central role in Fc receptor-mediated phagocytosis in the adaptive immune system. Shark is exclusively expressed in ectodermally derived epithelia, and is localized preferentially to the apical surface of the epithelial cells, it may play a role in a signaling pathway for epithelial cell polarity. The Syk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270650 [Multi-domain] Cd Length: 257 Bit Score: 103.20 E-value: 3.90e-24
|
||||||||||
PTKc_Ack_like | cd05040 | Catalytic domain of the Protein Tyrosine Kinase, Activated Cdc42-associated kinase; PTKs ... |
35-178 | 1.21e-23 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Activated Cdc42-associated kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes Ack1, thirty-eight-negative kinase 1 (Tnk1), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal catalytic domain, an SH3 domain, a Cdc42-binding CRIB domain, and a proline-rich region. They are mainly expressed in brain and skeletal tissues and are involved in the regulation of cell adhesion and growth, receptor degradation, and axonal guidance. Ack1 is also associated with androgen-independent prostate cancer progression. Tnk1 regulates TNFalpha signaling and may play an important role in cell death. The Ack-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270636 [Multi-domain] Cd Length: 258 Bit Score: 101.65 E-value: 1.21e-23
|
||||||||||
PTKc_Ror1 | cd05090 | Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor ... |
35-177 | 2.21e-23 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror kinases are expressed in many tissues during development. Avian Ror1 was found to be involved in late limb development. Studies in mice reveal that Ror1 is important in the regulation of neurite growth in central neurons, as well as in respiratory development. Loss of Ror1 also enhances the heart and skeletal abnormalities found in Ror2-deficient mice. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270672 [Multi-domain] Cd Length: 283 Bit Score: 101.63 E-value: 2.21e-23
|
||||||||||
PTKc_Tec_like | cd05059 | Catalytic domain of Tec-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the ... |
35-178 | 9.15e-23 | ||||||
Catalytic domain of Tec-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Tec-like subfamily is composed of Tec, Btk, Bmx (Etk), Itk (Tsk, Emt), Rlk (Txk), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, some members contain the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. Tec kinases form the second largest subfamily of nonreceptor PTKs and are expressed mainly by haematopoietic cells, although Tec and Bmx are also found in endothelial cells. B-cells express Btk and Tec, while T-cells express Itk, Txk, and Tec. Collectively, Tec kinases are expressed in a variety of myeloid cells such as mast cells, platelets, macrophages, and dendritic cells. Each Tec kinase shows a distinct cell-type pattern of expression. Tec kinases play important roles in the development, differentiation, maturation, regulation, survival, and function of B-cells and T-cells. Mutations in Btk cause the severe B-cell immunodeficiency, X-linked agammaglobulinaemia (XLA). The Tec-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173637 [Multi-domain] Cd Length: 256 Bit Score: 99.06 E-value: 9.15e-23
|
||||||||||
PTKc_InsR | cd05061 | Catalytic domain of the Protein Tyrosine Kinase, Insulin Receptor; PTKs catalyze the transfer ... |
35-169 | 9.63e-23 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Insulin Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. InsR is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the insulin ligand to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR signaling plays an important role in many cellular processes including glucose homeostasis, glycogen synthesis, lipid and protein metabolism, ion and amino acid transport, cell cycle and proliferation, cell differentiation, gene transcription, and nitric oxide synthesis. Insulin resistance, caused by abnormalities in InsR signaling, has been described in diabetes, hypertension, cardiovascular disease, metabolic syndrome, heart failure, and female infertility. The InsR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133192 [Multi-domain] Cd Length: 288 Bit Score: 100.04 E-value: 9.63e-23
|
||||||||||
PTKc_DDR2 | cd05095 | Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 2; PTKs catalyze ... |
35-177 | 9.97e-23 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR2 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR2 results in a slow but sustained receptor activation. DDR2 binds mostly to fibrillar collagens as well as collagen X. DDR2 is widely expressed in many tissues with the highest levels found in skeletal muscle, skin, kidney and lung. It is important in cell proliferation and development. Mice, with a deletion of DDR2, suffer from dwarfism and delayed healing of epidermal wounds. DDR2 also contributes to collagen (type I) regulation by inhibiting fibrillogenesis and altering the morphology of collagen fibers. It is also expressed in immature dendritic cells (DCs), where it plays a role in DC activation and function. The DDR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270677 [Multi-domain] Cd Length: 297 Bit Score: 100.07 E-value: 9.97e-23
|
||||||||||
PTKc_Jak_rpt2 | cd05038 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily ... |
35-181 | 1.28e-22 | ||||||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are PTKs, catalyzing the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jaks are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270634 [Multi-domain] Cd Length: 284 Bit Score: 99.38 E-value: 1.28e-22
|
||||||||||
PTKc_TrkC | cd05094 | Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze ... |
35-174 | 1.51e-22 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkC is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkC to its ligand, neurotrophin 3 (NT3), results in receptor oligomerization and activation of the catalytic domain. TrkC is broadly expressed in the nervous system and in some non-neural tissues including the developing heart. NT3/TrkC signaling plays an important role in the innervation of the cardiac conducting system and the development of smooth muscle cells. Mice deficient with NT3 and TrkC have multiple heart defects. NT3/TrkC signaling is also critical for the development and maintenance of enteric neurons that are important for the control of gut peristalsis. The TrkC subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270676 [Multi-domain] Cd Length: 287 Bit Score: 99.31 E-value: 1.51e-22
|
||||||||||
PTKc_TrkB | cd05093 | Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze ... |
35-180 | 1.10e-21 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkB is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkB to its ligands, brain-derived neurotrophic factor (BDNF) or neurotrophin 4 (NT4), results in receptor oligomerization and activation of the catalytic domain. TrkB is broadly expressed in the nervous system and in some non-neural tissues. It plays important roles in cell proliferation, differentiation, and survival. BDNF/Trk signaling plays a key role in regulating activity-dependent synaptic plasticity. TrkB also contributes to protection against gp120-induced neuronal cell death. TrkB overexpression is associated with poor prognosis in neuroblastoma (NB) and other human cancers. It acts as a suppressor of anoikis (detachment-induced apoptosis) and contributes to tumor metastasis. The TrkB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270675 [Multi-domain] Cd Length: 288 Bit Score: 96.65 E-value: 1.10e-21
|
||||||||||
PTKc_DDR1 | cd05096 | Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 1; PTKs catalyze ... |
35-178 | 1.66e-21 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR1 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR1 results in a slow but sustained receptor activation. DDR1 binds to all collagens tested to date (types I-IV). It is widely expressed in many tissues. It is abundant in the brain and is also found in keratinocytes, colonic mucosa epithelium, lung epithelium, thyroid follicles, and the islets of Langerhans. During embryonic development, it is found in the developing neuroectoderm. DDR1 is a key regulator of cell morphogenesis, differentiation and proliferation. It is important in the development of the mammary gland, the vasculator and the kidney. DDR1 is also found in human leukocytes, where it facilitates cell adhesion, migration, maturation, and cytokine production. The DDR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133227 [Multi-domain] Cd Length: 304 Bit Score: 96.54 E-value: 1.66e-21
|
||||||||||
PTKc_Ror2 | cd05091 | Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor ... |
35-177 | 1.76e-21 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror2 plays important roles in skeletal and heart formation. Ror2-deficient mice show widespread bone abnormalities, ventricular defects in the heart, and respiratory dysfunction. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Ror2 is also implicated in neural development. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270673 [Multi-domain] Cd Length: 284 Bit Score: 96.24 E-value: 1.76e-21
|
||||||||||
PTKc_Mer | cd14204 | Catalytic Domain of the Protein Tyrosine Kinase, Mer; PTKs catalyze the transfer of the ... |
35-181 | 3.42e-21 | ||||||
Catalytic Domain of the Protein Tyrosine Kinase, Mer; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Mer (or Mertk) is named after its original reported expression pattern (monocytes, epithelial, and reproductive tissues). It is required for the ingestion of apoptotic cells by phagocytes such as macrophages, retinal pigment epithelial cells, and dendritic cells. Mer is also important in maintaining immune homeostasis. Mer is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Mer subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271106 [Multi-domain] Cd Length: 284 Bit Score: 95.39 E-value: 3.42e-21
|
||||||||||
PTKc_Tyro3 | cd05074 | Catalytic domain of the Protein Tyrosine Kinase, Tyro3; PTKs catalyze the transfer of the ... |
35-181 | 4.14e-21 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tyro3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyro3 (or Sky) is predominantly expressed in the central nervous system and the brain, and functions as a neurotrophic factor. It is also expressed in osteoclasts and has a role in bone resorption. Tyro3 is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Tyro3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270659 [Multi-domain] Cd Length: 284 Bit Score: 94.98 E-value: 4.14e-21
|
||||||||||
PTKc_Fes_like | cd05041 | Catalytic domain of Fes-like Protein Tyrosine Kinases; Protein Tyrosine Kinase (PTK) family; ... |
35-178 | 5.82e-21 | ||||||
Catalytic domain of Fes-like Protein Tyrosine Kinases; Protein Tyrosine Kinase (PTK) family; Fes subfamily; catalytic (c) domain. Fes subfamily members include Fes (or Fps), Fer, and similar proteins. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes subfamily proteins are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated tyr kinase activity. Fes and Fer kinases play roles in haematopoiesis, inflammation and immunity, growth factor signaling, cytoskeletal regulation, cell migration and adhesion, and the regulation of cell-cell interactions. Fes and Fer show redundancy in their biological functions. Pssm-ID: 270637 [Multi-domain] Cd Length: 251 Bit Score: 93.66 E-value: 5.82e-21
|
||||||||||
PTKc_Btk_Bmx | cd05113 | Catalytic domain of the Protein Tyrosine Kinases, Bruton's tyrosine kinase and Bone marrow ... |
35-173 | 9.87e-21 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Bruton's tyrosine kinase and Bone marrow kinase on the X chromosome; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Btk and Bmx (also named Etk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Btk contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Btk is expressed in B-cells, and a variety of myeloid cells including mast cells, platelets, neutrophils, and dendrictic cells. It interacts with a variety of partners, from cytosolic proteins to nuclear transcription factors, suggesting a diversity of functions. Stimulation of a diverse array of cell surface receptors, including antigen engagement of the B-cell receptor, leads to PH-mediated membrane translocation of Btk and subsequent phosphorylation by Src kinase and activation. Btk plays an important role in the life cycle of B-cells including their development, differentiation, proliferation, survival, and apoptosis. Mutations in Btk cause the primary immunodeficiency disease, X-linked agammaglobulinaemia (XLA) in humans. Bmx is primarily expressed in bone marrow and the arterial endothelium, and plays an important role in ischemia-induced angiogenesis. It facilitates arterial growth, capillary formation, vessel maturation, and bone marrow-derived endothelial progenitor cell mobilization. The Btk/Bmx subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173657 [Multi-domain] Cd Length: 256 Bit Score: 93.02 E-value: 9.87e-21
|
||||||||||
PTKc_ALK_LTK | cd05036 | Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte ... |
35-179 | 1.25e-20 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte Tyrosine Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyr residues in protein substrates. ALK and LTK are orphan receptor PTKs (RTKs) whose ligands are not yet well-defined. ALK appears to play an important role in mammalian neural development as well as visceral muscle differentiation in Drosophila. ALK is aberrantly expressed as fusion proteins, due to chromosomal translocations, in about 60% of anaplastic large cell lymphomas (ALCLs). ALK fusion proteins are also found in rare cases of diffuse large B cell lymphomas (DLBCLs). LTK is mainly expressed in B lymphocytes and neuronal tissues. It is important in cell proliferation and survival. Transgenic mice expressing TLK display retarded growth and high mortality rate. In addition, a polymorphism in mouse and human LTK is implicated in the pathogenesis of systemic lupus erythematosus. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. They are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The ALK/LTK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270632 [Multi-domain] Cd Length: 277 Bit Score: 93.22 E-value: 1.25e-20
|
||||||||||
PTKc_TAM | cd05035 | Catalytic Domain of TAM (Tyro3, Axl, Mer) Protein Tyrosine Kinases; PTKs catalyze the transfer ... |
35-181 | 1.03e-19 | ||||||
Catalytic Domain of TAM (Tyro3, Axl, Mer) Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The TAM subfamily consists of Tyro3 (or Sky), Axl, Mer (or Mertk), and similar proteins. TAM subfamily members are receptor tyr kinases (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. TAM proteins are implicated in a variety of cellular effects including survival, proliferation, migration, and phagocytosis. They are also associated with several types of cancer as well as inflammatory, autoimmune, vascular, and kidney diseases. The TAM subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270631 [Multi-domain] Cd Length: 273 Bit Score: 90.67 E-value: 1.03e-19
|
||||||||||
PTKc_Fes | cd05084 | Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the ... |
35-177 | 1.44e-19 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes (or Fps) is a cytoplasmic (or nonreceptor) PTK containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated PTK activity. Fes kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells. It plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. A recent study implicates Fes kinase as a tumor suppressor in colorectal cancer. The Fes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270667 [Multi-domain] Cd Length: 252 Bit Score: 89.60 E-value: 1.44e-19
|
||||||||||
PTKc_DDR_like | cd05097 | Catalytic domain of Discoidin Domain Receptor-like Protein Tyrosine Kinases; PTKs catalyze the ... |
35-169 | 1.88e-19 | ||||||
Catalytic domain of Discoidin Domain Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR-like proteins are members of the DDR subfamily, which are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133228 [Multi-domain] Cd Length: 295 Bit Score: 90.42 E-value: 1.88e-19
|
||||||||||
PTKc_IGF-1R | cd05062 | Catalytic domain of the Protein Tyrosine Kinase, Insulin-like Growth Factor-1 Receptor; PTKs ... |
35-169 | 2.16e-19 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Insulin-like Growth Factor-1 Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. IGF-1R is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the ligand (IGF-1 or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, which stimulates downstream kinase activities and biological function. IGF-1R signaling is important in the differentiation, growth, and survival of normal cells. In cancer cells, where it is frequently overexpressed, IGF-1R is implicated in proliferation, the suppression of apoptosis, invasion, and metastasis. IGF-1R is being developed as a therapeutic target in cancer treatment. The IGF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133193 [Multi-domain] Cd Length: 277 Bit Score: 89.71 E-value: 2.16e-19
|
||||||||||
PTKc_FGFR | cd05053 | Catalytic domain of the Protein Tyrosine Kinases, Fibroblast Growth Factor Receptors; PTKs ... |
35-173 | 2.24e-19 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Fibroblast Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The FGFR subfamily consists of FGFR1, FGFR2, FGFR3, FGFR4, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, and to heparin/heparan sulfate (HS) results in the formation of a ternary complex, which leads to receptor dimerization and activation, and intracellular signaling. There are at least 23 FGFs and four types of FGFRs. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. FGF/FGFR signaling is important in the regulation of embryonic development, homeostasis, and regenerative processes. Depending on the cell type and stage, FGFR signaling produces diverse cellular responses including proliferation, growth arrest, differentiation, and apoptosis. Aberrant signaling leads to many human diseases such as skeletal, olfactory, and metabolic disorders, as well as cancer. The FGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase . Pssm-ID: 270646 [Multi-domain] Cd Length: 294 Bit Score: 90.17 E-value: 2.24e-19
|
||||||||||
PTKc_Csk_like | cd05039 | Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
35-178 | 2.68e-19 | ||||||
Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of Csk, Chk, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. They negatively regulate the activity of Src kinases that are anchored to the plasma membrane. To inhibit Src kinases, Csk and Chk are translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Chk inhibit Src kinases using a noncatalytic mechanism by simply binding to them. As negative regulators of Src kinases, Csk and Chk play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. The Csk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270635 [Multi-domain] Cd Length: 256 Bit Score: 88.95 E-value: 2.68e-19
|
||||||||||
PTKc_Met_Ron | cd05058 | Catalytic domain of the Protein Tyrosine Kinases, Met and Ron; PTKs catalyze the transfer of ... |
35-183 | 2.74e-19 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Met and Ron; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Met and Ron are receptor PTKs (RTKs) composed of an alpha-beta heterodimer. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. Met binds to the ligand, hepatocyte growth factor/scatter factor (HGF/SF), and is also called the HGF receptor. HGF/Met signaling plays a role in growth, transformation, cell motility, invasion, metastasis, angiogenesis, wound healing, and tissue regeneration. Aberrant expression of Met through mutations or gene amplification is associated with many human cancers including hereditary papillary renal and gastric carcinomas. The ligand for Ron is macrophage stimulating protein (MSP). Ron signaling is important in regulating cell motility, adhesion, proliferation, and apoptosis. Aberrant Ron expression is implicated in tumorigenesis and metastasis. The Met/Ron subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270649 [Multi-domain] Cd Length: 262 Bit Score: 89.07 E-value: 2.74e-19
|
||||||||||
PTK_Ryk | cd05043 | Pseudokinase domain of Ryk (Receptor related to tyrosine kinase); Ryk is a receptor tyr kinase ... |
35-178 | 5.03e-19 | ||||||
Pseudokinase domain of Ryk (Receptor related to tyrosine kinase); Ryk is a receptor tyr kinase (RTK) containing an extracellular region with two leucine-rich motifs, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. The extracellular region of Ryk shows homology to the N-terminal domain of Wnt inhibitory factor-1 (WIF) and serves as the ligand (Wnt) binding domain of Ryk. Ryk is expressed in many different tissues both during development and in adults, suggesting a widespread function. It acts as a chemorepulsive axon guidance receptor of Wnt glycoproteins and is responsible for the establishment of axon tracts during the development of the central nervous system. In addition, studies in mice reveal that Ryk is essential in skeletal, craniofacial, and cardiac development. Thus, it appears Ryk is involved in signal transduction despite its lack of kinase activity. Ryk may function as an accessory protein that modulates the signals coming from catalytically active partner RTKs such as the Eph receptors. The Ryk subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270639 [Multi-domain] Cd Length: 279 Bit Score: 88.66 E-value: 5.03e-19
|
||||||||||
PTKc_Srm_Brk | cd05148 | Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal ... |
35-177 | 5.35e-19 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (Srm) and Breast tumor kinase (Brk); PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Srm and Brk (also called protein tyrosine kinase 6) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Brk has been found to be overexpressed in a majority of breast tumors. Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Srm and Brk however, lack the N-terminal myristylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. The Srm/Brk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133248 [Multi-domain] Cd Length: 261 Bit Score: 88.26 E-value: 5.35e-19
|
||||||||||
PTKc_VEGFR2 | cd05103 | Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; ... |
35-181 | 1.24e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR2 (or Flk1) binds the ligands VEGFA, VEGFC, VEGFD and VEGFE. VEGFR2 signaling is implicated in all aspects of normal and pathological vascular endothelial cell biology. It induces a variety of cellular effects including migration, survival, and proliferation. It is critical in regulating embryonic vascular development and angiogenesis. VEGFR2 is the major signal transducer in pathological angiogenesis including cancer and diabetic retinopathy, and is a target for inhibition in cancer therapy. The carboxyl terminus of VEGFR2 plays an important role in its autophosphorylation and activation. VEGFR2 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270681 [Multi-domain] Cd Length: 343 Bit Score: 88.88 E-value: 1.24e-18
|
||||||||||
PTKc_VEGFR | cd05054 | Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; ... |
35-173 | 1.35e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The VEGFR subfamily consists of VEGFR1 (Flt1), VEGFR2 (Flk1), VEGFR3 (Flt4), and similar proteins. VEGFR subfamily members are receptor PTKss (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. There are five VEGF ligands in mammals, which bind, in an overlapping pattern to the three VEGFRs, which can form homo or heterodimers. VEGFRs regulate the cardiovascular system. They are critical for vascular development during embryogenesis and blood vessel formation in adults. They induce cellular functions common to other growth factor receptors such as cell migration, survival, and proliferation. The VEGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270647 [Multi-domain] Cd Length: 298 Bit Score: 87.93 E-value: 1.35e-18
|
||||||||||
PTKc_Itk | cd05112 | Catalytic domain of the Protein Tyrosine Kinase, Interleukin-2-inducible T-cell Kinase; PTKs ... |
35-178 | 1.51e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Interleukin-2-inducible T-cell Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Itk, also known as Tsk or Emt, is a member of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Itk contains the Tec homology (TH) domain containing one proline-rich region and a zinc-binding region. Itk is expressed in T-cells and mast cells, and is important in their development and differentiation. Of the three Tec kinases expressed in T-cells, Itk plays the predominant role in T-cell receptor (TCR) signaling. It is activated by phosphorylation upon TCR crosslinking and is involved in the pathway resulting in phospholipase C-gamma1 activation and actin polymerization. It also plays a role in the downstream signaling of the T-cell costimulatory receptor CD28, the T-cell surface receptor CD2, and the chemokine receptor CXCR4. In addition, Itk is crucial for the development of T-helper(Th)2 effector responses. The Itk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133243 [Multi-domain] Cd Length: 256 Bit Score: 86.93 E-value: 1.51e-18
|
||||||||||
PTKc_Tec_Rlk | cd05114 | Catalytic domain of the Protein Tyrosine Kinases, Tyrosine kinase expressed in hepatocellular ... |
35-181 | 2.07e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Tyrosine kinase expressed in hepatocellular carcinoma and Resting lymphocyte kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tec and Rlk (also named Txk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. Instead of PH, Rlk contains an N-terminal cysteine-rich region. In addition to PH, Tec also contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Tec kinases are expressed mainly by haematopoietic cells. Tec is more widely-expressed than other Tec-like subfamily kinases. It is found in endothelial cells, both B- and T-cells, and a variety of myeloid cells including mast cells, erythroid cells, platelets, macrophages and neutrophils. Rlk is expressed in T-cells and mast cell lines. Tec and Rlk are both key components of T-cell receptor (TCR) signaling. They are important in TCR-stimulated proliferation, IL-2 production and phopholipase C-gamma1 activation. The Tec/Rlk subfamily is part of a larger superfamily, that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270685 [Multi-domain] Cd Length: 260 Bit Score: 86.45 E-value: 2.07e-18
|
||||||||||
PTKc_Axl | cd05075 | Catalytic domain of the Protein Tyrosine Kinase, Axl; PTKs catalyze the transfer of the ... |
35-181 | 5.79e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Axl; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Axl is widely expressed in a variety of organs and cells including epithelial, mesenchymal, hematopoietic, as well as non-transformed cells. It is important in many cellular functions such as survival, anti-apoptosis, proliferation, migration, and adhesion. Axl was originally isolated from patients with chronic myelogenous leukemia and a chronic myeloproliferative disorder. It is overexpressed in many human cancers including colon, squamous cell, thyroid, breast, and lung carcinomas. Axl is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to its ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Axl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270660 [Multi-domain] Cd Length: 277 Bit Score: 85.44 E-value: 5.79e-18
|
||||||||||
PTKc_VEGFR1 | cd14207 | Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; ... |
35-173 | 6.12e-18 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR1 (or Flt1) binds VEGFA, VEGFB, and placenta growth factor (PLGF). It regulates monocyte and macrophage migration, vascular permeability, haematopoiesis, and the recruitment of haematopietic progenitor cells from the bone marrow. VEGFR1 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271109 [Multi-domain] Cd Length: 340 Bit Score: 86.60 E-value: 6.12e-18
|
||||||||||
PTKc_EGFR_like | cd05057 | Catalytic domain of Epidermal Growth Factor Receptor-like Protein Tyrosine Kinases; PTKs ... |
35-173 | 7.17e-18 | ||||||
Catalytic domain of Epidermal Growth Factor Receptor-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER, ErbB) subfamily members include EGFR (HER1, ErbB1), HER2 (ErbB2), HER3 (ErbB3), HER4 (ErbB4), and similar proteins. They are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, resulting in the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Collectively, they can recognize a variety of ligands including EGF, TGFalpha, and neuregulins, among others. All four subfamily members can form homo- or heterodimers. HER3 contains an impaired kinase domain and depends on its heterodimerization partner for activation. EGFR subfamily members are involved in signaling pathways leading to a broad range of cellular responses including cell proliferation, differentiation, migration, growth inhibition, and apoptosis. Gain of function alterations, through their overexpression, deletions, or point mutations in their kinase domains, have been implicated in various cancers. These receptors are targets of many small molecule inhibitors and monoclonal antibodies used in cancer therapy. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270648 [Multi-domain] Cd Length: 279 Bit Score: 85.16 E-value: 7.17e-18
|
||||||||||
PTKc_Fer | cd05085 | Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; ... |
35-178 | 1.12e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; Fer kinase; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fer kinase is a member of the Fes subfamily of proteins which are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. Fer kinase is expressed in a wide variety of tissues, and is found to reside in both the cytoplasm and the nucleus. It plays important roles in neuronal polarization and neurite development, cytoskeletal reorganization, cell migration, growth factor signaling, and the regulation of cell-cell interactions mediated by adherens junctions and focal adhesions. Fer kinase also regulates cell cycle progression in malignant cells. Pssm-ID: 270668 [Multi-domain] Cd Length: 251 Bit Score: 83.90 E-value: 1.12e-17
|
||||||||||
PTKc_Syk | cd05116 | Catalytic domain of the Protein Tyrosine Kinase, Spleen tyrosine kinase; PTKs catalyze the ... |
35-177 | 1.97e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Spleen tyrosine kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Syk is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Syk was first cloned from the spleen, and its function in hematopoietic cells is well-established. It is involved in the signaling downstream of activated receptors (including B-cell and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. More recently, Syk expression has been detected in other cell types (including epithelial cells, vascular endothelial cells, neurons, hepatocytes, and melanocytes), suggesting a variety of biological functions in non-immune cells. Syk plays a critical role in maintaining vascular integrity and in wound healing during embryogenesis. It also regulates Vav3, which is important in osteoclast function including bone development. In breast epithelial cells, where Syk acts as a negative regulator for EGFR signaling, loss of Syk expression is associated with abnormal proliferation during cancer development suggesting a potential role as a tumor suppressor. In mice, Syk has been shown to inhibit malignant transformation of mammary epithelial cells induced with murine mammary tumor virus (MMTV). The Syk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133247 [Multi-domain] Cd Length: 257 Bit Score: 83.47 E-value: 1.97e-17
|
||||||||||
PTKc_Chk | cd05083 | Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the ... |
35-177 | 2.26e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Chk is also referred to as megakaryocyte-associated tyrosine kinase (Matk). Chk inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Chk is expressed in brain and hematopoietic cells. Like Csk, it is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases that are anchored to the plasma membrane, Chk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Studies in mice reveal that Chk is not functionally redundant with Csk and that it plays an important role as a regulator of immune responses. Chk also plays a role in neural differentiation in a manner independent of Src by enhancing Mapk activation via Ras-mediated signaling. The Chk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270666 [Multi-domain] Cd Length: 254 Bit Score: 83.38 E-value: 2.26e-17
|
||||||||||
PTKc_VEGFR3 | cd05102 | Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 3; ... |
35-183 | 2.39e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR3 (or Flt4) preferentially binds the ligands VEGFC and VEGFD. VEGFR3 is essential for lymphatic endothelial cell (EC) development and function. It has been shown to regulate adaptive immunity during corneal transplantation. VEGFR3 is upregulated on blood vascular ECs in pathological conditions such as vascular tumors and the periphery of solid tumors. It plays a role in cancer progression and lymph node metastasis. Missense mutations in the VEGFR3 gene are associated with primary human lymphedema. VEGFR3 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270680 [Multi-domain] Cd Length: 336 Bit Score: 85.03 E-value: 2.39e-17
|
||||||||||
PTKc_PDGFR_beta | cd05107 | Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor beta; ... |
35-181 | 2.42e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor beta; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR beta is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR beta forms homodimers or heterodimers with PDGFR alpha, depending on the nature of the PDGF ligand. PDGF-BB and PDGF-DD induce PDGFR beta homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR beta signaling leads to a variety of cellular effects including the stimulation of cell growth and chemotaxis, as well as the inhibition of apoptosis and GAP junctional communication. It is critical in normal angiogenesis as it is involved in the recruitment of pericytes and smooth muscle cells essential for vessel stability. Aberrant PDGFR beta expression is associated with some human cancers. The continuously-active fusion proteins of PDGFR beta with COL1A1 and TEL are associated with dermatofibrosarcoma protuberans (DFSP) and a subset of chronic myelomonocytic leukemia (CMML), respectively. The PDGFR beta subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133238 [Multi-domain] Cd Length: 401 Bit Score: 85.83 E-value: 2.42e-17
|
||||||||||
PTKc_Frk_like | cd05068 | Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
35-177 | 2.88e-17 | ||||||
Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Frk and Srk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Frk, also known as Rak, is specifically expressed in liver, lung, kidney, intestine, mammary glands, and the islets of Langerhans. Rodent homologs were previously referred to as GTK (gastrointestinal tyr kinase), BSK (beta-cell Src-like kinase), or IYK (intestinal tyr kinase). Studies in mice reveal that Frk is not essential for viability. It plays a role in the signaling that leads to cytokine-induced beta-cell death in Type I diabetes. It also regulates beta-cell number during embryogenesis and early in life. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Frk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270653 [Multi-domain] Cd Length: 267 Bit Score: 83.22 E-value: 2.88e-17
|
||||||||||
PTKc_Src_like | cd05034 | Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of ... |
35-174 | 3.16e-17 | ||||||
Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, and Yes. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, and Lyn show a limited expression pattern. The Src-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270630 [Multi-domain] Cd Length: 248 Bit Score: 82.72 E-value: 3.16e-17
|
||||||||||
PTKc_FGFR1 | cd05098 | Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 1; PTKs ... |
35-182 | 5.02e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Alternative splicing of FGFR1 transcripts produces a variety of isoforms, which are differentially expressed in cells. FGFR1 binds the ligands, FGF1 and FGF2, with high affinity and has also been reported to bind FGF4, FGF6, and FGF9. FGFR1 signaling is critical in the control of cell migration during embryo development. It promotes cell proliferation in fibroblasts. Nuclear FGFR1 plays a role in the regulation of transcription. Mutations, insertions or deletions of FGFR1 have been identified in patients with Kallman's syndrome (KS), an inherited disorder characterized by hypogonadotropic hypogonadism and loss of olfaction. Aberrant FGFR1 expression has been found in some human cancers including 8P11 myeloproliferative syndrome (EMS), breast cancer, and pancreatic adenocarcinoma. FGFR1 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270678 [Multi-domain] Cd Length: 302 Bit Score: 83.14 E-value: 5.02e-17
|
||||||||||
PTKc_EphR | cd05033 | Catalytic domain of Ephrin Receptor Protein Tyrosine Kinases; PTKs catalyze the transfer of ... |
35-181 | 5.44e-17 | ||||||
Catalytic domain of Ephrin Receptor Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They can be classified into two classes (EphA and EphB), according to their extracellular sequences, which largely correspond to binding preferences for either GPI-anchored ephrin-A ligands or transmembrane ephrin-B ligands. Vertebrates have ten EphA and six EphB receptors, which display promiscuous ligand interactions within each class. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. This allows ephrin/EphR dimers to form, leading to the activation of the intracellular tyr kinase domain. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The main effect of ephrin/EphR interaction is cell-cell repulsion or adhesion. Ephrin/EphR signaling is important in neural development and plasticity, cell morphogenesis and proliferation, cell-fate determination, embryonic development, tissue patterning, and angiogenesis.The EphR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270629 [Multi-domain] Cd Length: 266 Bit Score: 82.42 E-value: 5.44e-17
|
||||||||||
PTKc_FGFR4 | cd05099 | Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 4; PTKs ... |
35-181 | 6.36e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 4; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Unlike other FGFRs, there is only one splice form of FGFR4. It binds FGF1, FGF2, FGF6, FGF19, and FGF23. FGF19 is a selective ligand for FGFR4. Although disruption of FGFR4 in mice causes no obvious phenotype, in vivo inhibition of FGFR4 in cultured skeletal muscle cells resulted in an arrest of muscle progenitor differentiation. FGF6 and FGFR4 are uniquely expressed in myofibers and satellite cells. FGF6/FGFR4 signaling appears to play a key role in the regulation of muscle regeneration. A polymorphism in FGFR4 is found in head and neck squamous cell carcinoma. FGFR4 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133230 [Multi-domain] Cd Length: 314 Bit Score: 83.09 E-value: 6.36e-17
|
||||||||||
PTKc_Lyn | cd05072 | Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the ... |
35-174 | 8.74e-17 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lyn is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lyn is expressed in B lymphocytes and myeloid cells. It exhibits both positive and negative regulatory roles in B cell receptor (BCR) signaling. Lyn, as well as Fyn and Blk, promotes B cell activation by phosphorylating ITAMs (immunoreceptor tyr activation motifs) in CD19 and in Ig components of BCR. It negatively regulates signaling by its unique ability to phosphorylate ITIMs (immunoreceptor tyr inhibition motifs) in cell surface receptors like CD22 and CD5. Lyn also plays an important role in G-CSF receptor signaling by phosphorylating a variety of adaptor molecules. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lyn subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270657 [Multi-domain] Cd Length: 272 Bit Score: 82.01 E-value: 8.74e-17
|
||||||||||
PTKc_PDGFR | cd05055 | Catalytic domain of the Protein Tyrosine Kinases, Platelet Derived Growth Factor Receptors; ... |
35-183 | 1.00e-16 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Platelet Derived Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The PDGFR subfamily consists of PDGFR alpha, PDGFR beta, KIT, CSF-1R, the mammalian FLT3, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. PDGFR kinase domains are autoinhibited by their juxtamembrane regions containing tyr residues. The binding to their ligands leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR subfamily receptors are important in the development of a variety of cells. PDGFRs are expressed in a many cells including fibroblasts, neurons, endometrial cells, mammary epithelial cells, and vascular smooth muscle cells. PDGFR signaling is critical in normal embryonic development, angiogenesis, and wound healing. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. Mammalian FLT3 plays an important role in the survival, proliferation, and differentiation of stem cells. The PDGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase . Pssm-ID: 133186 [Multi-domain] Cd Length: 302 Bit Score: 82.53 E-value: 1.00e-16
|
||||||||||
PTKc_Csk | cd05082 | Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the ... |
35-180 | 1.24e-16 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Csk is expressed in a wide variety of tissues. As a negative regulator of Src, Csk plays a role in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Csk is a cytoplasmic (or nonreceptor) PTK containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases, Csk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. In addition, Csk also shows Src-independent functions. It is a critical component in G-protein signaling, and plays a role in cytoskeletal reorganization and cell migration. The Csk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133213 [Multi-domain] Cd Length: 256 Bit Score: 81.18 E-value: 1.24e-16
|
||||||||||
PTKc_RET | cd05045 | Catalytic domain of the Protein Tyrosine Kinase, REarranged during Transfection protein; PTKs ... |
35-181 | 2.03e-16 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, REarranged during Transfection protein; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. RET is a receptor PTK (RTK) containing an extracellular region with four cadherin-like repeats, a calcium-binding site, and a cysteine-rich domain, a transmembrane segment, and an intracellular catalytic domain. It is part of a multisubunit complex that binds glial-derived neurotropic factor (GDNF) family ligands (GFLs) including GDNF, neurturin, artemin, and persephin. GFLs bind RET along with four GPI-anchored coreceptors, bringing two RET molecules together, leading to autophosphorylation, activation, and intracellular signaling. RET is essential for the development of the sympathetic, parasympathetic and enteric nervous systems, and the kidney. RET disruption by germline mutations causes diseases in humans including congenital aganglionosis of the gastrointestinal tract (Hirschsprung's disease) and three related inherited cancers: multiple endocrine neoplasia type 2A (MEN2A), MEN2B, and familial medullary thyroid carcinoma. The RET subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173631 [Multi-domain] Cd Length: 290 Bit Score: 81.16 E-value: 2.03e-16
|
||||||||||
PTKc_Zap-70 | cd05115 | Catalytic domain of the Protein Tyrosine Kinase, Zeta-chain-associated protein of 70kDa; PTKs ... |
35-161 | 2.08e-16 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Zeta-chain-associated protein of 70kDa; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Zap-70 is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor (TCR) signaling. Zap-70 binds the phosphorylated ITAM (immunoreceptor tyr activation motif) sequences of the activated TCR zeta-chain through its SH2 domains, leading to its phosphorylation and activation. It then phosphorylates target proteins, which propagate the signals to downstream pathways. Zap-70 is hardly detected in normal peripheral B-cells, but is present in some B-cell malignancies. It is used as a diagnostic marker for chronic lymphocytic leukemia (CLL) as it is associated with the more aggressive subtype of the disease. The Zap-70 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270686 [Multi-domain] Cd Length: 269 Bit Score: 80.76 E-value: 2.08e-16
|
||||||||||
PTKc_FGFR3 | cd05100 | Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 3; PTKs ... |
35-182 | 7.75e-16 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Many FGFR3 splice variants have been reported with the IIIb and IIIc isoforms being the predominant forms. FGFR3 IIIc is the isoform expressed in chondrocytes, the cells affected in dwarfism, while IIIb is expressed in epithelial cells. FGFR3 ligands include FGF1, FGF2, FGF4, FGF8, FGF9, and FGF23. It is a negative regulator of long bone growth. In the cochlear duct and in the lens, FGFR3 is involved in differentiation while it appears to have a role in cell proliferation in epithelial cells. Germline mutations in FGFR3 are associated with skeletal disorders including several forms of dwarfism. Some missense mutations are associated with multiple myeloma and carcinomas of the bladder and cervix. Overexpression of FGFR3 is found in thyroid carcinoma. FGFR3 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173652 [Multi-domain] Cd Length: 334 Bit Score: 80.45 E-value: 7.75e-16
|
||||||||||
PTKc_FGFR2 | cd05101 | Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs ... |
35-182 | 2.19e-15 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. There are many splice variants of FGFR2 which show differential expression and binding to FGF ligands. Disruption of either FGFR2 or FGFR2b is lethal in mice, due to defects in the placenta or severe impairment of tissue development including lung, limb, and thyroid, respectively. Disruption of FGFR2c in mice results in defective bone and skull development. Genetic alterations of FGFR2 are associated with many human skeletal disorders including Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, and Pfeiffer syndrome. FGFR2 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270679 [Multi-domain] Cd Length: 313 Bit Score: 78.52 E-value: 2.19e-15
|
||||||||||
PTKc_Jak3_rpt2 | cd05081 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 3; PTKs catalyze the ... |
35-180 | 4.90e-15 | ||||||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 3; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270665 [Multi-domain] Cd Length: 283 Bit Score: 76.86 E-value: 4.90e-15
|
||||||||||
PTKc_CSF-1R | cd05106 | Catalytic domain of the Protein Tyrosine Kinase, Colony-Stimulating Factor-1 Receptor; PTKs ... |
35-183 | 1.09e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Colony-Stimulating Factor-1 Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. CSF-1R, also called c-Fms, is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of CSF-1R to its ligand, CSF-1, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. It leads to increases in gene transcription and protein translation, and induces cytoskeletal remodeling. CSF-1R signaling leads to a variety of cellular responses including survival, proliferation, and differentiation of target cells. It plays an important role in innate immunity, tissue development and function, and the pathogenesis of some diseases including atherosclerosis and cancer. CSF-1R signaling is also implicated in mammary gland development during pregnancy and lactation. Aberrant CSF-1/CSF-1R expression correlates with tumor cell invasiveness, poor clinical prognosis, and bone metastasis in breast cancer. Although the structure of the human CSF-1R catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. The CSF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133237 [Multi-domain] Cd Length: 374 Bit Score: 77.19 E-value: 1.09e-14
|
||||||||||
PTKc_EphR_A2 | cd05063 | Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the ... |
35-181 | 1.17e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The EphA2 receptor is overexpressed in tumor cells and tumor blood vessels in a variety of cancers including breast, prostate, lung, and colon. As a result, it is an attractive target for drug design since its inhibition could affect several aspects of tumor progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 133194 [Multi-domain] Cd Length: 268 Bit Score: 75.40 E-value: 1.17e-14
|
||||||||||
PTKc_Tie1 | cd05089 | Catalytic domain of the Protein Tyrosine Kinase, Tie1; Protein Tyrosine Kinase (PTK) family; ... |
35-181 | 2.15e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tie1; Protein Tyrosine Kinase (PTK) family; Tie1; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie1 is a receptor tyr kinase (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. No specific ligand has been identified for Tie1, although the angiopoietin, Ang-1, binds to Tie1 through integrins at high concentrations. In vivo studies of Tie1 show that it is critical in vascular development. Pssm-ID: 270671 [Multi-domain] Cd Length: 297 Bit Score: 75.42 E-value: 2.15e-14
|
||||||||||
PTK_HER3 | cd05111 | Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR ... |
35-178 | 2.17e-14 | ||||||
Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. HER3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The HER2-HER3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. HER3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. The HER3 subfamily is part of a larger superfamily that includes other pseudokinases and the the catalytic domains of active kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173656 [Multi-domain] Cd Length: 279 Bit Score: 74.99 E-value: 2.17e-14
|
||||||||||
PTKc_Tie | cd05047 | Catalytic domain of Tie Protein Tyrosine Kinases; PTKs catalyze the transfer of the ... |
35-181 | 2.23e-14 | ||||||
Catalytic domain of Tie Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie proteins, consisting of Tie1 and Tie2, are receptor PTKs (RTKs) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2, while no specific ligand has been identified for Tie1. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. In vivo studies of Tie1 show that it is critical in vascular development. The Tie subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270641 [Multi-domain] Cd Length: 270 Bit Score: 74.69 E-value: 2.23e-14
|
||||||||||
PTKc_FAK | cd05056 | Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the ... |
35-183 | 3.25e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. FAK is a cytoplasmic (or nonreceptor) PTK that contains an autophosphorylation site and a FERM domain at the N-terminus, a central tyr kinase domain, proline-rich regions, and a C-terminal FAT (focal adhesion targeting) domain. FAK activity is dependent on integrin-mediated cell adhesion, which facilitates N-terminal autophosphorylation. Full activation is achieved by the phosphorylation of its two adjacent A-loop tyrosines. FAK is important in mediating signaling initiated at sites of cell adhesions and at growth factor receptors. Through diverse molecular interactions, FAK functions as a biosensor or integrator to control cell motility. It is a key regulator of cell survival, proliferation, migration and invasion, and thus plays an important role in the development and progression of cancer. Src binds to autophosphorylated FAK forming the FAK-Src dual kinase complex, which is activated in a wide variety of tumor cells and generates signals promoting growth and metastasis. FAK is being developed as a target for cancer therapy. The FAK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133187 [Multi-domain] Cd Length: 270 Bit Score: 74.38 E-value: 3.25e-14
|
||||||||||
PTKc_Kit | cd05104 | Catalytic domain of the Protein Tyrosine Kinase, Kit; PTKs catalyze the transfer of the ... |
35-169 | 3.44e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Kit; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. Kit signaling is involved in major cellular functions including cell survival, proliferation, differentiation, adhesion, and chemotaxis. Mutations in Kit, which result in constitutive ligand-independent activation, are found in human cancers such as gastrointestinal stromal tumor (GIST) and testicular germ cell tumor (TGCT). The aberrant expression of Kit and/or SCF is associated with other tumor types such as systemic mastocytosis and cancers of the breast, neurons, lung, prostate, colon, and rectum. Although the structure of the human Kit catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. Kit is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of Kit to its ligand, the stem-cell factor (SCF), leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. The Kit subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270682 [Multi-domain] Cd Length: 375 Bit Score: 75.71 E-value: 3.44e-14
|
||||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
35-173 | 4.20e-14 | ||||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 73.72 E-value: 4.20e-14
|
||||||||||
PTKc_Jak2_rpt2 | cd14205 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 2; PTKs catalyze the ... |
35-177 | 7.20e-14 | ||||||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak2 is widely expressed in many tissues and is essential for the signaling of hormone-like cytokines such as growth hormone, erythropoietin, thrombopoietin, and prolactin, as well as some IFNs and cytokines that signal through the IL-3 and gp130 receptors. Disruption of Jak2 in mice results in an embryonic lethal phenotype with multiple defects including erythropoietic and cardiac abnormalities. It is the only Jak gene that results in a lethal phenotype when disrupted in mice. A mutation in the pseudokinase domain of Jak2, V617F, is present in many myeloproliferative diseases, including almost all patients with polycythemia vera, and 50% of patients with essential thrombocytosis and myelofibrosis. Jak2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271107 [Multi-domain] Cd Length: 284 Bit Score: 73.51 E-value: 7.20e-14
|
||||||||||
PTKc_PDGFR_alpha | cd05105 | Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor alpha; ... |
35-169 | 8.09e-14 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor alpha; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR alpha is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR alpha forms homodimers or heterodimers with PDGFR beta, depending on the nature of the PDGF ligand. PDGF-AA, PDGF-AB, and PDGF-CC induce PDGFR alpha homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR alpha signaling is important in the formation of lung alveoli, intestinal villi, mesenchymal dermis, and hair follicles, as well as in the development of oligodendrocytes, retinal astrocytes, neural crest cells, and testicular cells. Aberrant PDGFR alpha expression is associated with some human cancers. Mutations in PDGFR alpha have been found within a subset of gastrointestinal stromal tumors (GISTs). An active fusion protein FIP1L1-PDGFR alpha, derived from interstitial deletion, is associated with idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. The PDGFR alpha subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173653 [Multi-domain] Cd Length: 400 Bit Score: 75.06 E-value: 8.09e-14
|
||||||||||
STKc_MAP3K-like | cd13999 | Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine ... |
35-169 | 1.45e-13 | ||||||
Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed mainly of MAP3Ks and similar proteins, including TGF-beta Activated Kinase-1 (TAK1, also called MAP3K7), MAP3K12, MAP3K13, Mixed lineage kinase (MLK), MLK-Like mitogen-activated protein Triple Kinase (MLTK), and Raf (Rapidly Accelerated Fibrosarcoma) kinases. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Also included in this subfamily is the pseudokinase Kinase Suppressor of Ras (KSR), which is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway. Pssm-ID: 270901 [Multi-domain] Cd Length: 245 Bit Score: 71.80 E-value: 1.45e-13
|
||||||||||
PTKc_Abl | cd05052 | Catalytic domain of the Protein Tyrosine Kinase, Abelson kinase; PTKs catalyze the transfer of ... |
35-177 | 5.62e-13 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Abelson kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Abl (or c-Abl) is a ubiquitously-expressed cytoplasmic (or nonreceptor) PTK that contains SH3, SH2, and tyr kinase domains in its N-terminal region, as well as nuclear localization motifs, a putative DNA-binding domain, and F- and G-actin binding domains in its C-terminal tail. It also contains a short autoinhibitory cap region in its N-terminus. Abl function depends on its subcellular localization. In the cytoplasm, Abl plays a role in cell proliferation and survival. In response to DNA damage or oxidative stress, Abl is transported to the nucleus where it induces apoptosis. In chronic myelogenous leukemia (CML) patients, an aberrant translocation results in the replacement of the first exon of Abl with the BCR (breakpoint cluster region) gene. The resulting BCR-Abl fusion protein is constitutively active and associates into tetramers, resulting in a hyperactive kinase sending a continuous signal. This leads to uncontrolled proliferation, morphological transformation and anti-apoptotic effects. BCR-Abl is the target of selective inhibitors, such as imatinib (Gleevec), used in the treatment of CML. Abl2, also known as ARG (Abelson-related gene), is thought to play a cooperative role with Abl in the proper development of the nervous system. The Tel-ARG fusion protein, resulting from reciprocal translocation between chromosomes 1 and 12, is associated with acute myeloid leukemia (AML). The TEL gene is a frequent fusion partner of other tyr kinase oncogenes, including Tel/Abl, Tel/PDGFRbeta, and Tel/Jak2, found in patients with leukemia and myeloproliferative disorders. The Abl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270645 [Multi-domain] Cd Length: 263 Bit Score: 70.53 E-value: 5.62e-13
|
||||||||||
PTKc_EphR_A | cd05066 | Catalytic domain of the Protein Tyrosine Kinases, Class EphA Ephrin Receptors; PTKs catalyze ... |
35-173 | 5.83e-13 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Class EphA Ephrin Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of most class EphA receptors including EphA3, EphA4, EphA5, and EphA7, but excluding EphA1, EphA2 and EphA10. Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. One exception is EphA4, which also binds ephrins-B2/B3. EphA receptors and ephrin-A ligands are expressed in multiple areas of the developing brain, especially in the retina and tectum. They are part of a system controlling retinotectal mapping. EphRs comprise the largest subfamily of receptor PTKs (RTKs). EphRs contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270651 [Multi-domain] Cd Length: 267 Bit Score: 70.67 E-value: 5.83e-13
|
||||||||||
PTKc_Tie2 | cd05088 | Catalytic domain of the Protein Tyrosine Kinase, Tie2; PTKs catalyze the transfer of the ... |
35-183 | 1.36e-12 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Tie2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie2 is a receptor PTK (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie2 is expressed mainly in endothelial cells and hematopoietic stem cells. It is also found in a subset of tumor-associated monocytes and eosinophils. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. Tie2 signaling plays key regulatory roles in vascular integrity and quiescence, and in inflammation. The Tie2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133219 [Multi-domain] Cd Length: 303 Bit Score: 70.03 E-value: 1.36e-12
|
||||||||||
PTKc_EGFR | cd05108 | Catalytic domain of the Protein Tyrosine Kinase, Epidermal Growth Factor Receptor; PTKs ... |
35-178 | 1.79e-12 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Epidermal Growth Factor Receptor; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER1, ErbB1) is a receptor PTK (RTK) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands for EGFR include EGF, heparin binding EGF-like growth factor (HBEGF), epiregulin, amphiregulin, TGFalpha, and betacellulin. Upon ligand binding, EGFR can form homo- or heterodimers with other EGFR subfamily members. The EGFR signaling pathway is one of the most important pathways regulating cell proliferation, differentiation, survival, and growth. Overexpression and mutation in the kinase domain of EGFR have been implicated in the development and progression of a variety of cancers. A number of monoclonal antibodies and small molecule inhibitors have been developed that target EGFR, including the antibodies Cetuximab and Panitumumab, which are used in combination with other therapies for the treatment of colorectal cancer and non-small cell lung carcinoma (NSCLC). The small molecule inhibitors Gefitinib (Iressa) and Erlotinib (Tarceva), already used for NSCLC, are undergoing clinical trials for other types of cancer including gastrointestinal, breast, head and neck, and bladder. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270683 [Multi-domain] Cd Length: 313 Bit Score: 69.67 E-value: 1.79e-12
|
||||||||||
PTKc_HER2 | cd05109 | Catalytic domain of the Protein Tyrosine Kinase, HER2; PTKs catalyze the transfer of the ... |
35-180 | 4.07e-12 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, HER2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER2 (ErbB2, HER2/neu) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER2 does not bind to any known EGFR subfamily ligands, but contributes to the kinase activity of all possible heterodimers. It acts as the preferred partner of other ligand-bound EGFR proteins and functions as a signal amplifier, with the HER2-HER3 heterodimer being the most potent pair in mitogenic signaling. HER2 plays an important role in cell development, proliferation, survival and motility. Overexpression of HER2 results in its activation and downstream signaling, even in the absence of ligand. HER2 overexpression, mainly due to gene amplification, has been shown in a variety of human cancers. Its role in breast cancer is especially well-documented. HER2 is up-regulated in about 25% of breast tumors and is associated with increases in tumor aggressiveness, recurrence and mortality. HER2 is a target for monoclonal antibodies and small molecule inhibitors, which are being developed as treatments for cancer. The first humanized antibody approved for clinical use is Trastuzumab (Herceptin), which is being used in combination with other therapies to improve the survival rates of patients with HER2-overexpressing breast cancer. The HER2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270684 [Multi-domain] Cd Length: 279 Bit Score: 68.13 E-value: 4.07e-12
|
||||||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
40-177 | 5.74e-12 | ||||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 67.23 E-value: 5.74e-12
|
||||||||||
PTKc_Hck | cd05073 | Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the ... |
35-174 | 6.18e-12 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Hck is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Hck is present in myeloid and lymphoid cells that play a role in the development of cancer. It may be important in the oncogenic signaling of the protein Tel-Abl, which induces a chronic myelogenous leukemia (CML)-like disease. Hck also acts as a negative regulator of G-CSF-induced proliferation of granulocytic precursors, suggesting a possible role in the development of acute myeloid leukemia (AML). In addition, Hck is essential in regulating the degranulation of polymorphonuclear leukocytes. Genetic polymorphisms affect the expression level of Hck, which affects PMN mediator release and influences the development of chronic obstructive pulmonary disease (COPD). Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Hck subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270658 [Multi-domain] Cd Length: 265 Bit Score: 67.36 E-value: 6.18e-12
|
||||||||||
PTKc_EphR_B | cd05065 | Catalytic domain of the Protein Tyrosine Kinases, Class EphB Ephrin Receptors; PTKs catalyze ... |
35-173 | 1.09e-11 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Class EphB Ephrin Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EphB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. One exception is EphB2, which also interacts with ephrin A5. EphB receptors play important roles in synapse formation and plasticity, spine morphogenesis, axon guidance, and angiogenesis. In the intestinal epithelium, EphBs are Wnt signaling target genes that control cell compartmentalization. They function as suppressors of colon cancer progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. The EphB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173638 [Multi-domain] Cd Length: 269 Bit Score: 66.82 E-value: 1.09e-11
|
||||||||||
PKc | cd00180 | Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ... |
35-173 | 1.33e-11 | ||||||
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 65.37 E-value: 1.33e-11
|
||||||||||
PTKc_Jak1_rpt2 | cd05079 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 1; PTKs catalyze the ... |
35-173 | 2.45e-11 | ||||||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173644 [Multi-domain] Cd Length: 284 Bit Score: 65.72 E-value: 2.45e-11
|
||||||||||
PTKc_Lck_Blk | cd05067 | Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs ... |
35-174 | 2.82e-11 | ||||||
Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lck and Blk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lck is expressed in T-cells and natural killer cells. It plays a critical role in T-cell maturation, activation, and T-cell receptor (TCR) signaling. Lck phosphorylates ITAM (immunoreceptor tyr activation motif) sequences on several subunits of TCRs, leading to the activation of different second messenger cascades. Phosphorylated ITAMs serve as binding sites for other signaling factor such as Syk and ZAP-70, leading to their activation and propagation of downstream events. In addition, Lck regulates drug-induced apoptosis by interfering with the mitochondrial death pathway. The apototic role of Lck is independent of its primary function in T-cell signaling. Blk is expressed specifically in B-cells. It is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lck/Blk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270652 [Multi-domain] Cd Length: 264 Bit Score: 65.29 E-value: 2.82e-11
|
||||||||||
PTKc_Tyk2_rpt2 | cd05080 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze ... |
35-173 | 3.03e-11 | ||||||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270664 [Multi-domain] Cd Length: 283 Bit Score: 65.69 E-value: 3.03e-11
|
||||||||||
PTKc_Src_Fyn_like | cd14203 | Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
35-174 | 8.87e-11 | ||||||
Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes a subset of Src-like PTKs including Src, Fyn, Yrk, and Yes, which are all widely expressed. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. They are also implicated in acute inflammatory responses and osteoclast function. The Src/Fyn-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271105 [Multi-domain] Cd Length: 248 Bit Score: 63.78 E-value: 8.87e-11
|
||||||||||
PTKc_EphR_A10 | cd05064 | Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A10; PTKs catalyze the ... |
36-181 | 3.20e-10 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A10; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphA10, which contains an inactive tyr kinase domain, may function to attenuate signals of co-clustered active receptors. EphA10 is mainly expressed in the testis. Ephrin/EphR interaction results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. EphRs comprise the largest subfamily of receptor tyr kinases (RTKs). In general, class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The EphA10 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133195 [Multi-domain] Cd Length: 266 Bit Score: 62.25 E-value: 3.20e-10
|
||||||||||
STKc_MLK2 | cd14148 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the ... |
45-178 | 8.26e-09 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK2 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K10. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK2 is abundant in brain, skeletal muscle, and testis. It functions upstream of the MAPK, c-Jun N-terminal kinase. It binds hippocalcin, a calcium-sensor protein that protects neurons against calcium-induced cell death. Both MLK2 and hippocalcin may be associated with the pathogenesis of Parkinson's disease. MLK2 also binds to normal huntingtin (Htt), which is important in neuronal transcription, development, and survival. MLK2 does not bind to the polyglutamine-expanded Htt, which is implicated in the pathogeneis of Huntington's disease, leading to neuronal toxicity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271050 [Multi-domain] Cd Length: 258 Bit Score: 58.07 E-value: 8.26e-09
|
||||||||||
Pkinase | pfam00069 | Protein kinase domain; |
55-173 | 1.47e-08 | ||||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 56.48 E-value: 1.47e-08
|
||||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
40-399 | 2.11e-08 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 58.10 E-value: 2.11e-08
|
||||||||||
PTKc_Yes | cd05069 | Catalytic domain of the Protein Tyrosine Kinase, Yes; PTKs catalyze the transfer of the ... |
35-174 | 2.80e-08 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Yes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Yes (or c-Yes) is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. c-Yes kinase is the cellular homolog of the oncogenic protein (v-Yes) encoded by the Yamaguchi 73 and Esh sarcoma viruses. It displays functional overlap with other Src subfamily members, particularly Src. It also shows some unique functions such as binding to occludins, transmembrane proteins that regulate extracellular interactions in tight junctions. Yes also associates with a number of proteins in different cell types that Src does not interact with, like JAK2 and gp130 in pre-adipocytes, and Pyk2 in treated pulmonary vein endothelial cells. Although the biological function of Yes remains unclear, it appears to have a role in regulating cell-cell interactions and vesicle trafficking in polarized cells. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Yes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270654 [Multi-domain] Cd Length: 279 Bit Score: 56.62 E-value: 2.80e-08
|
||||||||||
PTKc_HER4 | cd05110 | Catalytic domain of the Protein Tyrosine Kinase, HER4; PTKs catalyze the transfer of the ... |
35-180 | 3.27e-08 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, HER4; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER4 (ErbB4) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands that bind HER4 fall into two groups, the neuregulins (or heregulins) and some EGFR (HER1) ligands including betacellulin, HBEGF, and epiregulin. All four neuregulins (NRG1-4) interact with HER4. Upon ligand binding, HER4 forms homo- or heterodimers with other HER proteins. HER4 is essential in embryonic development. It is implicated in mammary gland, cardiac, and neural development. As a postsynaptic receptor of NRG1, HER4 plays an important role in synaptic plasticity and maturation. The impairment of NRG1/HER4 signaling may contribute to schizophrenia. The HER4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173655 [Multi-domain] Cd Length: 303 Bit Score: 56.61 E-value: 3.27e-08
|
||||||||||
PK_GC | cd13992 | Pseudokinase domain of membrane Guanylate Cyclase receptors; The pseudokinase domain shows ... |
36-172 | 3.31e-08 | ||||||
Pseudokinase domain of membrane Guanylate Cyclase receptors; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs lack a critical aspartate involved in ATP binding and does not exhibit kinase activity. It functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270894 [Multi-domain] Cd Length: 268 Bit Score: 56.24 E-value: 3.31e-08
|
||||||||||
PTKc_Src | cd05071 | Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the ... |
35-174 | 5.29e-08 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src (or c-Src) is a cytoplasmic (or non-receptor) PTK, containing an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region with a conserved tyr. It is activated by autophosphorylation at the tyr kinase domain, and is negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). c-Src is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. The Src subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270656 [Multi-domain] Cd Length: 277 Bit Score: 55.85 E-value: 5.29e-08
|
||||||||||
PTKc_Fyn | cd05070 | Catalytic domain of the Protein Tyrosine Kinase, Fyn; PTKs catalyze the transfer of the ... |
35-174 | 7.50e-08 | ||||||
Catalytic domain of the Protein Tyrosine Kinase, Fyn; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fyn and Yrk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Fyn, together with Lck, plays a critical role in T-cell signal transduction by phosphorylating ITAM (immunoreceptor tyr activation motif) sequences on T-cell receptors, ultimately leading to the proliferation and differentiation of T-cells. In addition, Fyn is involved in the myelination of neurons, and is implicated in Alzheimer's and Parkinson's diseases. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Fyn/Yrk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase. Pssm-ID: 270655 [Multi-domain] Cd Length: 274 Bit Score: 55.07 E-value: 7.50e-08
|
||||||||||
STKc_SLK_like | cd06611 | Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the ... |
35-173 | 7.89e-08 | ||||||
Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the subfamily include SLK, STK10 (also called LOK for Lymphocyte-Oriented Kinase), SmSLK (Schistosoma mansoni SLK), and related proteins. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It also plays a role in mediating actin reorganization. STK10 is responsible in regulating the CD28 responsive element in T cells, as well as leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. SmSLK is capable of activating the MAPK Jun N-terminal kinase (JNK) pathway in human embryonic kidney cells as well as in Xenopus oocytes. It may participate in regulating MAPK cascades during host-parasite interactions. The SLK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132942 [Multi-domain] Cd Length: 280 Bit Score: 55.13 E-value: 7.89e-08
|
||||||||||
STKc_MLK | cd14061 | Catalytic domain of the Serine/Threonine Kinases, Mixed Lineage Kinases; STKs catalyze the ... |
35-178 | 3.92e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Mixed Lineage Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Mammals have four MLKs (MLK1-4), mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270963 [Multi-domain] Cd Length: 258 Bit Score: 52.78 E-value: 3.92e-07
|
||||||||||
STKc_MLK1 | cd14145 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the ... |
45-178 | 4.87e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK1 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K9. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Little is known about the specific function of MLK1. It is capable of activating the c-Jun N-terminal kinase pathway. Mice lacking both MLK1 and MLK2 are viable, fertile, and have normal life spans. There could be redundancy in the function of MLKs. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271047 [Multi-domain] Cd Length: 270 Bit Score: 52.74 E-value: 4.87e-07
|
||||||||||
STKc_MLK4 | cd14146 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the ... |
35-178 | 2.16e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK4 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271048 [Multi-domain] Cd Length: 268 Bit Score: 50.81 E-value: 2.16e-06
|
||||||||||
STKc_MAPK | cd07834 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs ... |
35-172 | 3.11e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Typical MAPK pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPK kinase (MAP2K or MKK), which itself is phosphorylated and activated by a MAPK kinase kinase (MAP3K or MKKK). Each cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. There are three typical MAPK subfamilies: Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38. Some MAPKs are atypical in that they are not regulated by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7. The MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270828 [Multi-domain] Cd Length: 329 Bit Score: 50.60 E-value: 3.11e-06
|
||||||||||
STKc_MLK3 | cd14147 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the ... |
46-180 | 3.91e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK3 is a mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK3 activates multiple MAPK pathways and plays a role in apoptosis, proliferation, migration, and differentiation, depending on the cellular context. It is highly expressed in breast cancer cells and its signaling through c-Jun N-terminal kinase has been implicated in the migration, invasion, and malignancy of cancer cells. MLK3 also functions as a negative regulator of Inhibitor of Nuclear Factor-KappaB Kinase (IKK) and consequently, it also impacts inflammation and immunity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271049 [Multi-domain] Cd Length: 267 Bit Score: 50.03 E-value: 3.91e-06
|
||||||||||
STKc_SLK | cd06643 | Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer ... |
35-152 | 3.94e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It acts as a MAPK kinase kinase by phosphorylating ASK1, resulting in the phosphorylation of p38. SLK also plays a role in mediating actin reorganization. It is part of a microtubule-associated complex that is targeted at adhesion sites, and is required in focal adhesion turnover and in regulating cell migration. The SLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270811 [Multi-domain] Cd Length: 283 Bit Score: 50.03 E-value: 3.94e-06
|
||||||||||
STKc_Raf | cd14062 | Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) ... |
35-151 | 5.21e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Raf kinases act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain, and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. The Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270964 [Multi-domain] Cd Length: 253 Bit Score: 49.31 E-value: 5.21e-06
|
||||||||||
STKc_STK10 | cd06644 | Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase ... |
35-173 | 5.99e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase or LOK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK10/LOK is also called polo-like kinase kinase 1 in Xenopus (xPlkk1). It is highly expressed in lymphocytes and is responsible in regulating leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. It plays a role in regulating the CD28 responsive element in T cells, and may also function as a regulator of polo-like kinase 1 (Plk1), a protein which is overexpressed in multiple tumor types. The STK10 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132975 [Multi-domain] Cd Length: 292 Bit Score: 49.64 E-value: 5.99e-06
|
||||||||||
PK_GC-A_B | cd14042 | Pseudokinase domain of the membrane Guanylate Cyclase receptors, GC-A and GC-B; The ... |
40-177 | 7.41e-06 | ||||||
Pseudokinase domain of the membrane Guanylate Cyclase receptors, GC-A and GC-B; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. GC-A binds and is activated by the atrial and B-type natriuretic peptides, ANP and BNP, which are important in blood pressure regulation and cardiac pathophysiology. GC-B binds the C-type natriuretic peptide, CNP, which is a potent vasorelaxant and functions in vascular remodeling and bone growth regulation. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC-A/B subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270944 [Multi-domain] Cd Length: 279 Bit Score: 49.13 E-value: 7.41e-06
|
||||||||||
STKc_B-Raf | cd14151 | Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) ... |
35-133 | 8.42e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. B-Raf activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The B-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271053 [Multi-domain] Cd Length: 274 Bit Score: 48.90 E-value: 8.42e-06
|
||||||||||
STKc_C-Raf | cd14149 | Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) ... |
35-133 | 9.62e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. C-Raf, also known as Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around midgestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. C-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The C-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271051 [Multi-domain] Cd Length: 283 Bit Score: 48.87 E-value: 9.62e-06
|
||||||||||
STKc_LKB1_CaMKK | cd14008 | Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ... |
40-174 | 1.03e-05 | ||||||
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270910 [Multi-domain] Cd Length: 267 Bit Score: 48.70 E-value: 1.03e-05
|
||||||||||
STKc_Cdc7_like | cd06627 | Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs ... |
40-173 | 1.27e-05 | ||||||
Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270797 [Multi-domain] Cd Length: 254 Bit Score: 47.99 E-value: 1.27e-05
|
||||||||||
PTK_Jak_rpt1 | cd05037 | Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak ... |
39-169 | 1.35e-05 | ||||||
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. In the case of Jak2, the presumed pseudokinase (repeat 1) domain exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270633 [Multi-domain] Cd Length: 259 Bit Score: 48.25 E-value: 1.35e-05
|
||||||||||
STKc_A-Raf | cd14150 | Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) ... |
35-133 | 3.80e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A-Raf cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. A-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The A-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271052 [Multi-domain] Cd Length: 265 Bit Score: 46.93 E-value: 3.80e-05
|
||||||||||
STKc_PLK1 | cd14187 | Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 1; STKs catalyze the ... |
35-173 | 5.62e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. Its localization changes during mitotic progression; associating first with centrosomes in prophase, with kinetochores in prometaphase and metaphase, at the central spindle in anaphase, and in the midbody during telophase. It carries multiple functions throughout the cell cycle through interactions with differrent substrates at these specific subcellular locations. PLK1 is overexpressed in many human cancers and is associated with poor prognosis. The PLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271089 [Multi-domain] Cd Length: 265 Bit Score: 46.46 E-value: 5.62e-05
|
||||||||||
STKc_PAK | cd06614 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the ... |
33-173 | 7.12e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. PAK deregulation is associated with tumor development. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). Group II PAKs contain a PBD and a catalytic domain, but lack other motifs found in group I PAKs. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. Group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX; no such binding has been demonstrated for group II PAKs. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270789 [Multi-domain] Cd Length: 255 Bit Score: 45.66 E-value: 7.12e-05
|
||||||||||
STKc_MST1_2 | cd06612 | Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; ... |
40-173 | 8.65e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132943 [Multi-domain] Cd Length: 256 Bit Score: 45.72 E-value: 8.65e-05
|
||||||||||
STKc_EIF2AK1_HRI | cd14049 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
35-173 | 1.35e-04 | ||||||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Heme-Regulated Inhibitor kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HRI (or EIF2AK1) contains an N-terminal regulatory heme-binding domain and a C-terminal catalytic kinase domain. It is suppressed under normal conditions by binding of the heme iron, and is activated during heme deficiency. It functions as a critical regulator that ensures balanced synthesis of globins and heme, in order to form stable hemoglobin during erythroid differentiation and maturation. HRI also protects cells and enhances survival under iron-deficient conditions. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The HRI subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270951 [Multi-domain] Cd Length: 284 Bit Score: 45.19 E-value: 1.35e-04
|
||||||||||
STKc_MST3_like | cd06609 | Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs ... |
35-173 | 1.38e-04 | ||||||
Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST3, MST4, STK25, Schizosaccharomyces pombe Nak1 and Sid1, Saccharomyces cerevisiae sporulation-specific protein 1 (SPS1), and related proteins. Nak1 is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Sid1 is a component in the septation initiation network (SIN) signaling pathway, and plays a role in cytokinesis. SPS1 plays a role in regulating proteins required for spore wall formation. MST4 plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. STK25 may play a role in the regulation of cell migration and polarization. The MST3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270786 [Multi-domain] Cd Length: 274 Bit Score: 45.31 E-value: 1.38e-04
|
||||||||||
STKc_NUAK | cd14073 | Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze ... |
35-120 | 2.69e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270975 [Multi-domain] Cd Length: 254 Bit Score: 43.92 E-value: 2.69e-04
|
||||||||||
STKc_Mos | cd13979 | Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze ... |
35-180 | 3.33e-04 | ||||||
Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270881 [Multi-domain] Cd Length: 265 Bit Score: 43.91 E-value: 3.33e-04
|
||||||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
35-122 | 3.61e-04 | ||||||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 43.66 E-value: 3.61e-04
|
||||||||||
STKc_ERK5 | cd07855 | Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; ... |
35-112 | 3.81e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ERK5 (also called Big MAPK1 (BMK1) or MAPK7) has a unique C-terminal extension, making it approximately twice as big as other MAPKs. This extension contains transcriptional activation capability which is inhibited by the N-terminal half. ERK5 is activated in response to growth factors and stress by a cascade that leads to its phosphorylation by the MAP2K MEK5, which in turn is regulated by the MAP3Ks MEKK2 and MEKK3. Activated ERK5 phosphorylates its targets including myocyte enhancer factor 2 (MEF2), Sap1a, c-Myc, and RSK. It plays a role in EGF-induced cell proliferation during the G1/S phase transition. Studies on knockout mice revealed that ERK5 is essential for cardiovascular development and plays an important role in angiogenesis. It is also critical for neural differentiation and survival. The ERK5 pathway has been implicated in the pathogenesis of many diseases including cancer, cardiac hypertrophy, and atherosclerosis. MAPKs are important mediators of cellular responses to extracellular signals. The ERK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270842 [Multi-domain] Cd Length: 336 Bit Score: 44.28 E-value: 3.81e-04
|
||||||||||
STKc_Pat1_like | cd13993 | Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ... |
35-175 | 5.59e-04 | ||||||
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270895 [Multi-domain] Cd Length: 267 Bit Score: 43.11 E-value: 5.59e-04
|
||||||||||
STKc_TGFbR-like | cd13998 | Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; ... |
35-171 | 5.91e-04 | ||||||
Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. There are two types of TGFbeta receptors included in this subfamily, I and II, that play different roles in signaling. For signaling to occur, the ligand first binds to the high-affinity type II receptor, which is followed by the recruitment of the low-affinity type I receptor to the complex and its activation through trans-phosphorylation by the type II receptor. The active type I receptor kinase starts intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. Different ligands interact with various combinations of types I and II receptors to elicit a specific signaling pathway. Activins primarily signal through combinations of ACVR1b/ALK7 and ACVR2a/b; myostatin and GDF11 through TGFbR1/ALK4 and ACVR2a/b; BMPs through ACVR1/ALK1 and BMPR2; and TGFbeta through TGFbR1 and TGFbR2. The TGFbR-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270900 [Multi-domain] Cd Length: 289 Bit Score: 43.20 E-value: 5.91e-04
|
||||||||||
STKc_CNK2-like | cd08530 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ... |
35-173 | 6.49e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270869 [Multi-domain] Cd Length: 256 Bit Score: 42.76 E-value: 6.49e-04
|
||||||||||
STKc_myosinIII_N_like | cd06608 | N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze ... |
40-173 | 6.71e-04 | ||||||
N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class III myosins are motor proteins with an N-terminal kinase catalytic domain and a C-terminal actin-binding motor domain. Class III myosins are present in the photoreceptors of invertebrates and vertebrates and in the auditory hair cells of mammals. The kinase domain of myosin III can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, and can autophosphorylate the C-terminal motor domain. Myosin III may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. It may also function as a cargo carrier during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The Drosophila class III myosin, called NinaC (Neither inactivation nor afterpotential protein C), is critical in normal adaptation and termination of photoresponse. Vertebrates contain two isoforms of class III myosin, IIIA and IIIB. This subfamily also includes mammalian NIK-like embryo-specific kinase (NESK), Traf2- and Nck-interacting kinase (TNIK), and mitogen-activated protein kinase (MAPK) kinase kinase kinase 4/6. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The class III myosin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270785 [Multi-domain] Cd Length: 275 Bit Score: 43.06 E-value: 6.71e-04
|
||||||||||
STKc_BMPR2_AMHR2 | cd14054 | Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and ... |
35-161 | 8.07e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and Anti-Muellerian Hormone Type II Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR2 and AMHR2 belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors (GDFs), and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. BMPR2 and AMHR2 act primarily as a receptor for BMPs and AMH, respectively. BMPs induce bone and cartilage formation, as well as regulate tooth, kidney, skin, hair, haematopoietic, and neuronal development. Mutations in BMPR2A is associated with familial pulmonary arterial hypertension. AMH is mainly responsible for the regression of Mullerian ducts during male sex differentiation. It is expressed exclusively by somatic cells of the gonads. Mutations in either AMH or AMHR2 cause persistent Mullerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism characterized by the presence of Mullerian derivatives (ovary and tubes) in otherwise normally masculine males. The BMPR2/AMHR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270956 [Multi-domain] Cd Length: 300 Bit Score: 42.73 E-value: 8.07e-04
|
||||||||||
STKc_ACVR1_ALK1 | cd14142 | Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin ... |
35-112 | 9.79e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin receptor-Like Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR1, also called Activin receptor-Like Kinase 2 (ALK2), and ALK1 act as receptors for bone morphogenetic proteins (BMPs) and they activate SMAD1/5/8. ACVR1 is widely expressed while ALK1 is limited mainly to endothelial cells. The specificity of BMP binding to type I receptors is affected by type II receptors. ACVR1 binds BMP6/7/9/10 and can also bind anti-Mullerian hormone (AMH) in the presence of AMHR2. ALK1 binds BMP9/10 as well as TGFbeta in endothelial cells. A missense mutation in the GS domain of ACVR1 causes fibrodysplasia ossificans progressiva, a complex and disabling disease characterized by congenital skeletal malformations and extraskeletal bone formation. ACVR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like ACVR1 and ALK1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The ACVR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271044 [Multi-domain] Cd Length: 298 Bit Score: 42.81 E-value: 9.79e-04
|
||||||||||
STKc_PLK3 | cd14189 | Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the ... |
35-169 | 1.15e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK3, also called Prk or Fnk (FGF-inducible kinase), regulates angiogenesis and responses to DNA damage. Activated PLK3 mediates Chk2 phosphorylation by ATM and the resulting checkpoint activation. PLK3 phosphorylates DNA polymerase delta and may be involved in DNA repair. It also inhibits Cdc25c, thereby regulating the onset of mitosis. The PLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271091 [Multi-domain] Cd Length: 255 Bit Score: 42.22 E-value: 1.15e-03
|
||||||||||
STKc_Nek | cd08215 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ... |
35-173 | 1.44e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270855 [Multi-domain] Cd Length: 258 Bit Score: 41.68 E-value: 1.44e-03
|
||||||||||
STKc_TGFbR_I | cd14056 | Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type ... |
35-170 | 1.46e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type I Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of type I receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation through trans-phosphorylation by type II receptors, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. They are inhibited by the immunophilin FKBP12, which is thought to control leaky signaling caused by receptor oligomerization in the absence of ligand. The TGFbR-I subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270958 [Multi-domain] Cd Length: 287 Bit Score: 41.87 E-value: 1.46e-03
|
||||||||||
STKc_STK25 | cd06642 | Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); ... |
35-173 | 1.66e-03 | ||||||
Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK25 is also called Ste20/oxidant stress response kinase 1 (SOK1) or yeast Sps1/Ste20-related kinase 1 (YSK1). It is localized in the Golgi apparatus through its interaction with the Golgi matrix protein GM130. It may be involved in the regulation of cell migration and polarization. STK25 binds and phosphorylates CCM3 (cerebral cavernous malformation 3), also called PCD10 (programmed cell death 10), and may play a role in apoptosis. Human STK25 is a candidate gene responsible for pseudopseudohypoparathyroidism (PPHP), a disease that shares features with the Albright hereditary osteodystrophy (AHO) phenotype. The STK25 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270810 [Multi-domain] Cd Length: 277 Bit Score: 41.97 E-value: 1.66e-03
|
||||||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
35-120 | 1.70e-03 | ||||||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 41.73 E-value: 1.70e-03
|
||||||||||
STKc_NAK1_like | cd06917 | Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of ... |
35-173 | 1.78e-03 | ||||||
Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270822 [Multi-domain] Cd Length: 277 Bit Score: 41.69 E-value: 1.78e-03
|
||||||||||
STKc_MAP3K12_13 | cd14059 | Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase ... |
35-169 | 2.47e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinases 12 and 13; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K12 is also called MAPK upstream kinase (MUK), dual leucine zipper-bearing kinase (DLK) or leucine-zipper protein kinase (ZPK). It is involved in the c-Jun N-terminal kinase (JNK) pathway that directly regulates axonal regulation through the phosphorylation of microtubule-associated protein 1B (MAP1B). It also regulates the differentiation of many cell types including adipocytes and may play a role in adipogenesis. MAP3K13, also called leucine zipper-bearing kinase (LZK), directly phosphorylates and activates MKK7, which in turn activates the JNK pathway. It also activates NF-kB through IKK activation and this activity is enhanced by antioxidant protein-1 (AOP-1). MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAP2Ks (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K12/13 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270961 [Multi-domain] Cd Length: 237 Bit Score: 40.94 E-value: 2.47e-03
|
||||||||||
STKc_HAL4_like | cd13994 | Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ... |
35-173 | 3.24e-03 | ||||||
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270896 [Multi-domain] Cd Length: 265 Bit Score: 40.75 E-value: 3.24e-03
|
||||||||||
STKc_TAO | cd06607 | Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs ... |
35-173 | 3.45e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. They activate the MAPKs, p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating the respective MAP/ERK kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. Vertebrates contain three TAO subfamily members, named TAO1, TAO2, and TAO3. The TAO subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270784 [Multi-domain] Cd Length: 258 Bit Score: 40.51 E-value: 3.45e-03
|
||||||||||
PTK_Jak3_rpt1 | cd14208 | Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 3; Jak3 is ... |
67-169 | 3.60e-03 | ||||||
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 3; Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit, common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. Jaks are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271110 [Multi-domain] Cd Length: 260 Bit Score: 40.66 E-value: 3.60e-03
|
||||||||||
STKc_nPKC_theta_like | cd05592 | Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and ... |
35-129 | 3.88e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270744 [Multi-domain] Cd Length: 320 Bit Score: 40.83 E-value: 3.88e-03
|
||||||||||
STKc_FA2-like | cd08529 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar ... |
35-173 | 4.42e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii FA2 was discovered in a genetic screen for deflagellation-defective mutants. It is essential for basal-body/centriole-associated microtubule severing, and plays a role in cell cycle progression. No cellular function has yet been ascribed to CNK4. The Chlamydomonas reinhardtii FA2-like subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily contains FA2 and CNK4. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270868 [Multi-domain] Cd Length: 256 Bit Score: 40.47 E-value: 4.42e-03
|
||||||||||
STKc_CaMKK2 | cd14199 | Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; ... |
35-148 | 5.22e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK2, also called CaMKK beta, is one of the most versatile CaMKs. It is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. CaMKK2 contains unique N- and C-terminal domains and a central catalytic kinase domain that is followed by a regulatory domain that bears overlapping autoinhibitory and CaM-binding regions. It can be activated by signaling through G-coupled receptors, IP3 receptors, plasma membrane ion channels, and Toll-like receptors. Thus, CaMKK2 acts as a molecular hub that is capable of receiving and decoding signals from diverse pathways. The CaMKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271101 [Multi-domain] Cd Length: 286 Bit Score: 40.33 E-value: 5.22e-03
|
||||||||||
STKc_Nek2 | cd08217 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
35-180 | 5.28e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270857 [Multi-domain] Cd Length: 265 Bit Score: 40.22 E-value: 5.28e-03
|
||||||||||
STKc_CDK7 | cd07841 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs ... |
35-112 | 6.61e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK7 plays essential roles in the cell cycle and in transcription. It associates with cyclin H and MAT1 and acts as a CDK-Activating Kinase (CAK) by phosphorylating and activating cell cycle CDKs (CDK1/2/4/6). In the brain, it activates CDK5. CDK7 is also a component of the general transcription factor TFIIH, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II when it is bound with unphosphorylated DNA, as present in the pre-initiation complex. Following phosphorylation, the CTD dissociates from the DNA which allows transcription initiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270833 [Multi-domain] Cd Length: 298 Bit Score: 39.86 E-value: 6.61e-03
|
||||||||||
STKc_MST3 | cd06641 | Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs ... |
35-173 | 9.32e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. It may also regulate paxillin and consequently, cell migration. MST3 is present in human placenta, where it plays an essential role in the oxidative stress-induced apoptosis of trophoblasts in normal spontaneous delivery. Dysregulation of trophoblast apoptosis may result in pregnancy complications such as preeclampsia and intrauterine growth retardation. The MST3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270809 [Multi-domain] Cd Length: 277 Bit Score: 39.29 E-value: 9.32e-03
|
||||||||||
Blast search parameters | ||||
|