pleckstrin homology (PH) domain-containing family G protein contains PH and RhoGEF domains and may function as a guanine nucleotide exchange factor; similar to Homo sapiens pleckstrin homology domain-containing family G members 1/2/3 (PLEKHG1/2/3) that are involved in the regulation of Rho protein signal transduction
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ...
264-414
5.24e-61
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
:
Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 205.28 E-value: 5.24e-61
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
107-282
2.20e-50
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.
:
Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 175.95 E-value: 2.20e-50
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ...
264-414
5.24e-61
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 205.28 E-value: 5.24e-61
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
107-282
2.20e-50
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.
Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 175.95 E-value: 2.20e-50
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.
Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 168.63 E-value: 9.50e-48
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
106-282
3.42e-46
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.
Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 164.01 E-value: 3.42e-46
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
338-410
1.06e-06
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.
Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.31 E-value: 1.06e-06
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ...
264-414
5.24e-61
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 205.28 E-value: 5.24e-61
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
107-282
2.20e-50
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.
Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 175.95 E-value: 2.20e-50
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.
Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 168.63 E-value: 9.50e-48
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
106-282
3.42e-46
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.
Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 164.01 E-value: 3.42e-46
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
338-410
1.06e-06
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.
Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.31 E-value: 1.06e-06
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
338-407
2.95e-05
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 44.07 E-value: 2.95e-05
Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain; Collybistin (also called PEM2) is homologous to the Dbl proteins ASEF (also called ARHGEF4/RhoGEF4) and SPATA13 (Spermatogenesis-associated protein 13; also called ASEF2). It activates CDC42 specifically and not any other Rho-family GTPases. Collybistin consists of an SH3 domain, followed by a RhoGEF/DH and PH domain. In Dbl proteins, the DH and PH domains catalyze the exchange of GDP for GTP in Rho GTPases, allowing them to signal to downstream effectors. It induces submembrane clustering of the receptor-associated peripheral membrane protein gephyrin, which is thought to form a scaffold underneath the postsynaptic membrane linking receptors to the cytoskeleton. It also acts as a tumor suppressor that links adenomatous polyposis coli (APC) protein, a negative regulator of the Wnt signaling pathway and promotes the phosphorylation and degradation of beta-catenin, to Cdc42. Autoinhibition of collybistin is accomplished by the binding of its SH3 domain with both the RhoGEF and PH domains to block access of Cdc42 to the GTPase-binding site. Inactivation promotes cancer progression. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 269931 Cd Length: 138 Bit Score: 44.94 E-value: 3.68e-05
p63RhoGEF pleckstrin homology (PH) domain, repeat 2; The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric G protein, Galphaq and linking Galphaq-coupled receptors (GPCRs) to the activation of RhoA. The Dbl(DH) and PH domains of p63RhoGEF interact with the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. Dbs is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a rhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Trio is a multidomain signaling protein that contains two RhoGEF(DH)-PH domains in tandem. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 270061 Cd Length: 140 Bit Score: 41.48 E-value: 5.80e-04
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal ...
338-407
2.38e-03
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
Pssm-ID: 275410 Cd Length: 92 Bit Score: 38.62 E-value: 2.38e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options