zinc finger protein 638 isoform X1 [Danio rerio]
S phase cyclin A-associated protein in the endoplasmic reticulum; C2H2-type zinc finger protein( domain architecture ID 13116398)
S phase cyclin A-associated protein in the endoplasmic reticulum acts as a CCNA2/CDK2 regulatory protein that transiently maintains CCNA2 in the cytoplasm| Cys2His2 (C2H2)-type zinc finger protein may be involved in transcriptional regulation
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||||||||
RRM_SF super family | cl17169 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
831-906 | 8.99e-11 | |||||||||||||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). The actual alignment was detected with superfamily member cd12716: Pssm-ID: 473069 [Multi-domain] Cd Length: 76 Bit Score: 59.71 E-value: 8.99e-11
|
|||||||||||||||||
RRM_SF super family | cl17169 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
662-731 | 4.31e-08 | |||||||||||||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). The actual alignment was detected with superfamily member cd12436: Pssm-ID: 473069 [Multi-domain] Cd Length: 76 Bit Score: 51.96 E-value: 4.31e-08
|
|||||||||||||||||
ZnF_U1 | smart00451 | U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ... |
2135-2169 | 7.33e-05 | |||||||||||||
U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ribonucleoprotein C and other RNA-binding proteins. : Pssm-ID: 197732 [Multi-domain] Cd Length: 35 Bit Score: 41.85 E-value: 7.33e-05
|
|||||||||||||||||
PTZ00121 super family | cl31754 | MAEBL; Provisional |
1185-2123 | 1.19e-03 | |||||||||||||
MAEBL; Provisional The actual alignment was detected with superfamily member PTZ00121: Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 44.36 E-value: 1.19e-03
|
|||||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||||
RRM1_2_NP220 | cd12716 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); ... |
831-906 | 8.99e-11 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); This subgroup corresponds to RRM1 and RRM2 of NP220, also termed zinc finger protein 638 (ZN638), or cutaneous T-cell lymphoma-associated antigen se33-1, or zinc finger matrin-like protein, a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). NP220 contains multiple domains, including MH1, MH2, and MH3, domains homologous to the acidic nuclear protein matrin 3; RS, an arginine/serine-rich domain commonly found in pre-mRNA splicing factors; PstI-HindIII, a domain essential for DNA binding; acidic repeat, a domain with nine repeats of the sequence LVTVDEVIEEEDL; and a Cys2-His2 zinc finger-like motif that is also present in matrin 3. It may be involved in packaging, transferring, or processing transcripts. This subgroup corresponds to the domain of MH2 that contains two tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Pssm-ID: 410115 [Multi-domain] Cd Length: 76 Bit Score: 59.71 E-value: 8.99e-11
|
|||||||||||||||||
RRM1_2_MATR3_like | cd12436 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ... |
662-731 | 4.31e-08 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region. Pssm-ID: 409870 [Multi-domain] Cd Length: 76 Bit Score: 51.96 E-value: 4.31e-08
|
|||||||||||||||||
ZnF_U1 | smart00451 | U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ... |
2135-2169 | 7.33e-05 | |||||||||||||
U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ribonucleoprotein C and other RNA-binding proteins. Pssm-ID: 197732 [Multi-domain] Cd Length: 35 Bit Score: 41.85 E-value: 7.33e-05
|
|||||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1185-2123 | 1.19e-03 | |||||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 44.36 E-value: 1.19e-03
|
|||||||||||||||||
RRM | smart00360 | RNA recognition motif; |
667-727 | 1.74e-03 | |||||||||||||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 39.11 E-value: 1.74e-03
|
|||||||||||||||||
hnRNP-L_PTB | TIGR01649 | hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ... |
667-715 | 3.64e-03 | |||||||||||||
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067). Pssm-ID: 273733 [Multi-domain] Cd Length: 481 Bit Score: 42.11 E-value: 3.64e-03
|
|||||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||||
RRM1_2_NP220 | cd12716 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); ... |
831-906 | 8.99e-11 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); This subgroup corresponds to RRM1 and RRM2 of NP220, also termed zinc finger protein 638 (ZN638), or cutaneous T-cell lymphoma-associated antigen se33-1, or zinc finger matrin-like protein, a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). NP220 contains multiple domains, including MH1, MH2, and MH3, domains homologous to the acidic nuclear protein matrin 3; RS, an arginine/serine-rich domain commonly found in pre-mRNA splicing factors; PstI-HindIII, a domain essential for DNA binding; acidic repeat, a domain with nine repeats of the sequence LVTVDEVIEEEDL; and a Cys2-His2 zinc finger-like motif that is also present in matrin 3. It may be involved in packaging, transferring, or processing transcripts. This subgroup corresponds to the domain of MH2 that contains two tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Pssm-ID: 410115 [Multi-domain] Cd Length: 76 Bit Score: 59.71 E-value: 8.99e-11
|
|||||||||||||||||
RRM_RBM20 | cd12685 | RNA recognition motif (RRM) found in vertebrate RNA-binding protein 20 (RBM20); This subfamily ... |
831-902 | 1.45e-10 | |||||||||||||
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 20 (RBM20); This subfamily corresponds to the RRM of RBM20, an alternative splicing regulator associated with dilated cardiomyopathy (DCM). It contains only one copy of RNA-recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Pssm-ID: 410086 [Multi-domain] Cd Length: 76 Bit Score: 59.18 E-value: 1.45e-10
|
|||||||||||||||||
RRM1_2_MATR3_like | cd12436 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ... |
831-901 | 1.35e-09 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region. Pssm-ID: 409870 [Multi-domain] Cd Length: 76 Bit Score: 56.20 E-value: 1.35e-09
|
|||||||||||||||||
RRM1_2_MATR3_like | cd12436 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ... |
662-731 | 4.31e-08 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region. Pssm-ID: 409870 [Multi-domain] Cd Length: 76 Bit Score: 51.96 E-value: 4.31e-08
|
|||||||||||||||||
RRM1_PTBP1_hnRNPL_like | cd12421 | RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ... |
831-898 | 2.97e-07 | |||||||||||||
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM. Pssm-ID: 409855 [Multi-domain] Cd Length: 74 Bit Score: 49.50 E-value: 2.97e-07
|
|||||||||||||||||
RRM2_MATR3 | cd12715 | RNA recognition motif 2 (RRM2) found in vertebrate matrin-3; This subgroup corresponds to the ... |
831-900 | 9.58e-07 | |||||||||||||
RNA recognition motif 2 (RRM2) found in vertebrate matrin-3; This subgroup corresponds to the RRM2 of Matrin 3 (MATR3 or P130), a highly conserved inner nuclear matrix protein with a bipartite nuclear localization signal (NLS), two zinc finger domains predicted to bind DNA, and two RNA recognition motifs (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that are known to interact with RNA. MATR3 has been implicated in various biological processes. It is involved in RNA processing by interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix. It plays a role in mRNA stabilization through maintaining the stability of certain mRNA species. Besides, it modulates the activity of proximal promoters by binding to highly repetitive sequences of matrix/scaffold attachment region (MAR/SAR). The phosphorylation of MATR3 is assumed to cause neuronal death. It is phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Its phosphorylation by protein kinase A (PKA) is responsible for the activation of the N-methyl-d-aspartic acid (NMDA) receptor. Furthermore, MATR3 has been identified as both a Ca2+-dependent CaM-binding protein and a downstream substrate of caspases. Additional research indicates that matrin 3 also binds Rev/Rev responsive element (RRE)-containing viral RNA and functions as a cofactor that mediates the post-transcriptional regulation of HIV-1. Pssm-ID: 410114 [Multi-domain] Cd Length: 80 Bit Score: 48.29 E-value: 9.58e-07
|
|||||||||||||||||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
663-727 | 2.09e-05 | |||||||||||||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 44.20 E-value: 2.09e-05
|
|||||||||||||||||
RRM1_PTBP1_hnRNPL_like | cd12421 | RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ... |
667-725 | 2.17e-05 | |||||||||||||
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM. Pssm-ID: 409855 [Multi-domain] Cd Length: 74 Bit Score: 44.49 E-value: 2.17e-05
|
|||||||||||||||||
ZnF_U1 | smart00451 | U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ... |
2135-2169 | 7.33e-05 | |||||||||||||
U1-like zinc finger; Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ribonucleoprotein C and other RNA-binding proteins. Pssm-ID: 197732 [Multi-domain] Cd Length: 35 Bit Score: 41.85 E-value: 7.33e-05
|
|||||||||||||||||
RRM_SCAF4_SCAF8 | cd12227 | RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ... |
671-727 | 2.66e-04 | |||||||||||||
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs. Pssm-ID: 409674 [Multi-domain] Cd Length: 77 Bit Score: 41.27 E-value: 2.66e-04
|
|||||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1185-2123 | 1.19e-03 | |||||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 44.36 E-value: 1.19e-03
|
|||||||||||||||||
RRM1_2_CoAA_like | cd12343 | RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ... |
668-727 | 1.27e-03 | |||||||||||||
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region. Pssm-ID: 409779 [Multi-domain] Cd Length: 66 Bit Score: 39.13 E-value: 1.27e-03
|
|||||||||||||||||
PTZ00341 | PTZ00341 | Ring-infected erythrocyte surface antigen; Provisional |
1065-1349 | 1.51e-03 | |||||||||||||
Ring-infected erythrocyte surface antigen; Provisional Pssm-ID: 173534 [Multi-domain] Cd Length: 1136 Bit Score: 44.01 E-value: 1.51e-03
|
|||||||||||||||||
RRM | smart00360 | RNA recognition motif; |
667-727 | 1.74e-03 | |||||||||||||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 39.11 E-value: 1.74e-03
|
|||||||||||||||||
hnRNP-L_PTB | TIGR01649 | hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ... |
667-715 | 3.64e-03 | |||||||||||||
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067). Pssm-ID: 273733 [Multi-domain] Cd Length: 481 Bit Score: 42.11 E-value: 3.64e-03
|
|||||||||||||||||
PRK13108 | PRK13108 | prolipoprotein diacylglyceryl transferase; Reviewed |
1638-1790 | 4.55e-03 | |||||||||||||
prolipoprotein diacylglyceryl transferase; Reviewed Pssm-ID: 237284 [Multi-domain] Cd Length: 460 Bit Score: 41.89 E-value: 4.55e-03
|
|||||||||||||||||
RRM1_hnRNPL_like | cd12689 | RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ... |
660-714 | 5.16e-03 | |||||||||||||
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Pssm-ID: 410090 [Multi-domain] Cd Length: 80 Bit Score: 38.02 E-value: 5.16e-03
|
|||||||||||||||||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
832-901 | 5.72e-03 | |||||||||||||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 37.65 E-value: 5.72e-03
|
|||||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
1039-1709 | 5.92e-03 | |||||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 42.05 E-value: 5.92e-03
|
|||||||||||||||||
Blast search parameters | ||||
|