pleckstrin homology domain-containing family D member 1 isoform X1 [Mus musculus]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PH-like super family | cl17171 | Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ... |
22-127 | 4.40e-66 | |||||
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins. The actual alignment was detected with superfamily member cd13281: Pssm-ID: 473070 Cd Length: 139 Bit Score: 208.72 E-value: 4.40e-66
|
|||||||||
Smc super family | cl34174 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
117-366 | 2.32e-12 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; The actual alignment was detected with superfamily member COG1196: Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 69.58 E-value: 2.32e-12
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PH_PLEKHD1 | cd13281 | Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ... |
22-127 | 4.40e-66 | |||||
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270099 Cd Length: 139 Bit Score: 208.72 E-value: 4.40e-66
|
|||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
117-366 | 2.32e-12 | |||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 69.58 E-value: 2.32e-12
|
|||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
121-362 | 1.17e-10 | |||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 63.92 E-value: 1.17e-10
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
21-105 | 2.25e-07 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.10 E-value: 2.25e-07
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
22-104 | 2.60e-07 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.70 E-value: 2.60e-07
|
|||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
117-386 | 9.15e-07 | |||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 51.68 E-value: 9.15e-07
|
|||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
124-364 | 1.66e-05 | |||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 47.66 E-value: 1.66e-05
|
|||||||||
PspC_subgroup_1 | NF033838 | pneumococcal surface protein PspC, choline-binding form; The pneumococcal surface protein PspC, ... |
131-340 | 1.41e-03 | |||||
pneumococcal surface protein PspC, choline-binding form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A. The other form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. Pssm-ID: 468201 [Multi-domain] Cd Length: 684 Bit Score: 41.15 E-value: 1.41e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
PH_PLEKHD1 | cd13281 | Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ... |
22-127 | 4.40e-66 | ||||||
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270099 Cd Length: 139 Bit Score: 208.72 E-value: 4.40e-66
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
117-366 | 2.32e-12 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 69.58 E-value: 2.32e-12
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
132-386 | 1.10e-10 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 64.19 E-value: 1.10e-10
|
||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
121-362 | 1.17e-10 | ||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 63.92 E-value: 1.17e-10
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
120-366 | 1.48e-10 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 63.80 E-value: 1.48e-10
|
||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
92-352 | 4.09e-10 | ||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 62.38 E-value: 4.09e-10
|
||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
120-368 | 1.23e-09 | ||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 60.84 E-value: 1.23e-09
|
||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
143-376 | 5.57e-09 | ||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 58.54 E-value: 5.57e-09
|
||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
131-386 | 2.39e-08 | ||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 56.60 E-value: 2.39e-08
|
||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
151-373 | 4.38e-08 | ||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 55.16 E-value: 4.38e-08
|
||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
132-390 | 5.75e-08 | ||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 55.46 E-value: 5.75e-08
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
135-362 | 1.09e-07 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 54.56 E-value: 1.09e-07
|
||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
128-349 | 1.60e-07 | ||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 54.15 E-value: 1.60e-07
|
||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
21-105 | 2.25e-07 | ||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.10 E-value: 2.25e-07
|
||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
22-104 | 2.60e-07 | ||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.70 E-value: 2.60e-07
|
||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
117-355 | 6.06e-07 | ||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 52.38 E-value: 6.06e-07
|
||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
117-347 | 6.78e-07 | ||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 51.99 E-value: 6.78e-07
|
||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
117-386 | 9.15e-07 | ||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 51.68 E-value: 9.15e-07
|
||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
152-360 | 1.18e-06 | ||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 51.07 E-value: 1.18e-06
|
||||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
22-102 | 8.31e-06 | ||||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 44.07 E-value: 8.31e-06
|
||||||||||
PH_3BP2 | cd13308 | SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ... |
22-105 | 1.08e-05 | ||||||
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270118 Cd Length: 113 Bit Score: 44.32 E-value: 1.08e-05
|
||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
117-321 | 1.42e-05 | ||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 47.76 E-value: 1.42e-05
|
||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
124-364 | 1.66e-05 | ||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 47.66 E-value: 1.66e-05
|
||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
133-359 | 2.60e-05 | ||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 46.98 E-value: 2.60e-05
|
||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
132-384 | 3.80e-05 | ||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 46.27 E-value: 3.80e-05
|
||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
121-453 | 4.20e-05 | ||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 46.29 E-value: 4.20e-05
|
||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
117-329 | 4.98e-05 | ||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 46.20 E-value: 4.98e-05
|
||||||||||
Nucleoporin_FG2 | pfam15967 | Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of ... |
159-317 | 9.72e-05 | ||||||
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif. Pssm-ID: 435043 [Multi-domain] Cd Length: 586 Bit Score: 45.04 E-value: 9.72e-05
|
||||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
151-348 | 1.16e-04 | ||||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 44.62 E-value: 1.16e-04
|
||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
131-380 | 2.20e-04 | ||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 43.90 E-value: 2.20e-04
|
||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
117-386 | 2.48e-04 | ||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 43.98 E-value: 2.48e-04
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
151-329 | 2.71e-04 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 43.77 E-value: 2.71e-04
|
||||||||||
PRK02224 | PRK02224 | DNA double-strand break repair Rad50 ATPase; |
132-363 | 3.13e-04 | ||||||
DNA double-strand break repair Rad50 ATPase; Pssm-ID: 179385 [Multi-domain] Cd Length: 880 Bit Score: 43.49 E-value: 3.13e-04
|
||||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
102-387 | 3.55e-04 | ||||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 43.14 E-value: 3.55e-04
|
||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
99-321 | 5.03e-04 | ||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 42.80 E-value: 5.03e-04
|
||||||||||
CCDC22 | pfam05667 | Coiled-coil domain-containing protein 22; Human coiled-coil domain-containing protein 22 ... |
125-327 | 5.21e-04 | ||||||
Coiled-coil domain-containing protein 22; Human coiled-coil domain-containing protein 22 (CCDC22) is involved in regulation of NF-kappa-B signalling; the function may involve association with COMMD8 and a CUL1-dependent E3 ubiquitin ligase complex. It is part of the OMMD/CCDC22/CCDC93 (CCC) complex, which interacts with the multisubunit WASH complex required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. This entry also includes CCDC22 homologs from animals and plants. Pssm-ID: 461708 [Multi-domain] Cd Length: 600 Bit Score: 42.71 E-value: 5.21e-04
|
||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
120-382 | 5.91e-04 | ||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 42.59 E-value: 5.91e-04
|
||||||||||
CALCOCO1 | pfam07888 | Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ... |
141-358 | 6.78e-04 | ||||||
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region. Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 42.19 E-value: 6.78e-04
|
||||||||||
PH_AtPH1 | cd13276 | Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ... |
22-99 | 7.93e-04 | ||||||
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270095 Cd Length: 106 Bit Score: 38.84 E-value: 7.93e-04
|
||||||||||
46 | PHA02562 | endonuclease subunit; Provisional |
120-321 | 8.63e-04 | ||||||
endonuclease subunit; Provisional Pssm-ID: 222878 [Multi-domain] Cd Length: 562 Bit Score: 41.92 E-value: 8.63e-04
|
||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
104-348 | 8.78e-04 | ||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 41.68 E-value: 8.78e-04
|
||||||||||
46 | PHA02562 | endonuclease subunit; Provisional |
145-370 | 9.01e-04 | ||||||
endonuclease subunit; Provisional Pssm-ID: 222878 [Multi-domain] Cd Length: 562 Bit Score: 41.54 E-value: 9.01e-04
|
||||||||||
PH_Ses | cd13288 | Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ... |
22-106 | 9.43e-04 | ||||||
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270105 [Multi-domain] Cd Length: 120 Bit Score: 39.14 E-value: 9.43e-04
|
||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
117-366 | 1.03e-03 | ||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 42.05 E-value: 1.03e-03
|
||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
117-368 | 1.17e-03 | ||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 41.70 E-value: 1.17e-03
|
||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
131-344 | 1.25e-03 | ||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 41.50 E-value: 1.25e-03
|
||||||||||
PspC_subgroup_1 | NF033838 | pneumococcal surface protein PspC, choline-binding form; The pneumococcal surface protein PspC, ... |
131-340 | 1.41e-03 | ||||||
pneumococcal surface protein PspC, choline-binding form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A. The other form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. Pssm-ID: 468201 [Multi-domain] Cd Length: 684 Bit Score: 41.15 E-value: 1.41e-03
|
||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
146-366 | 1.52e-03 | ||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 41.31 E-value: 1.52e-03
|
||||||||||
PH_IRS | cd01257 | Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ... |
31-104 | 1.85e-03 | ||||||
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 269959 Cd Length: 106 Bit Score: 38.04 E-value: 1.85e-03
|
||||||||||
DUF3584 | pfam12128 | Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ... |
117-372 | 1.98e-03 | ||||||
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication. Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 40.98 E-value: 1.98e-03
|
||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
200-356 | 2.11e-03 | ||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 40.67 E-value: 2.11e-03
|
||||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
140-313 | 2.19e-03 | ||||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 40.71 E-value: 2.19e-03
|
||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
114-222 | 3.07e-03 | ||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 40.15 E-value: 3.07e-03
|
||||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
165-352 | 3.58e-03 | ||||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 39.43 E-value: 3.58e-03
|
||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
86-318 | 3.95e-03 | ||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 39.75 E-value: 3.95e-03
|
||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
87-355 | 4.24e-03 | ||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 39.94 E-value: 4.24e-03
|
||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
94-363 | 4.27e-03 | ||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 39.95 E-value: 4.27e-03
|
||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
88-448 | 5.07e-03 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 39.53 E-value: 5.07e-03
|
||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
114-348 | 5.89e-03 | ||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 39.18 E-value: 5.89e-03
|
||||||||||
CCDC158 | pfam15921 | Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. ... |
120-370 | 6.15e-03 | ||||||
Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. The function is not known. Pssm-ID: 464943 [Multi-domain] Cd Length: 1112 Bit Score: 39.33 E-value: 6.15e-03
|
||||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
131-353 | 6.84e-03 | ||||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 38.66 E-value: 6.84e-03
|
||||||||||
PH1_FARP1-like | cd01220 | FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ... |
3-104 | 6.98e-03 | ||||||
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269928 Cd Length: 109 Bit Score: 36.14 E-value: 6.98e-03
|
||||||||||
ClpA | COG0542 | ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein ... |
243-354 | 7.93e-03 | ||||||
ATP-dependent Clp protease, ATP-binding subunit ClpA [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440308 [Multi-domain] Cd Length: 836 Bit Score: 38.91 E-value: 7.93e-03
|
||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
111-329 | 9.65e-03 | ||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 38.80 E-value: 9.65e-03
|
||||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
225-386 | 9.94e-03 | ||||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 38.39 E-value: 9.94e-03
|
||||||||||
Blast search parameters | ||||
|