NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|946693235|ref|XP_006136349|]
View 

meiosis regulator and mRNA stability factor 1, partial [Pelodiscus sinensis]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
MARF1_LOTUS pfam19687
MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis ...
611-821 7.64e-153

MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis regulator and mRNA stability factor 1 (MARF1) protein, an essential regulator of oogenesis required for completion of meiosis and retrotransposon silencing, key to maintain germline integrity. This domain provides RNA-binding properties to this protein, acting as an adapter to recruit targets for the effector domain NYN (pfam01936) at the N-terminal (RNase activity).


:

Pssm-ID: 437519 [Multi-domain]  Cd Length: 211  Bit Score: 461.84  E-value: 7.64e-153
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   611 QFSSETMTILQDAPACCLPIFKFTEIYEKKFGHKLIASDLYKLTDTVAIRDQGNGRLVCLLPSSQARQSPLGSSQSHDGS 690
Cdd:pfam19687    1 LLSSETISILQDAPACCLPLFKFTEIYEKKFGHKLIVSDLYKLTDTVAIREQGNGRLVCLLPSSQARQSPLGSSQSHDGS 80
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   691 SANCSPIIFEELEYHEPICKQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSD 770
Cdd:pfam19687   81 SANGSPIIFEELEYHEPVCRQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPECYAAKFSP 160
                          170       180       190       200       210
                   ....*....|....*....|....*....|....*....|....*....|.
gi 946693235   771 LEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKWIHNKPPPPTTDPWL 821
Cdd:pfam19687  161 LQLGSETMEGVPLEHLITCVPSITIVTAQNGFKVIKWIHNKPPPPNTDPWL 211
LOTUS_8_Limkain_b1 cd09984
The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): ...
1220-1295 1.33e-48

The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193598  Cd Length: 76  Bit Score: 167.01  E-value: 1.33e-48
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235 1220 LYLFAKNVRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 1295
Cdd:cd09984     1 LYQFAKNVRSLLHTYHYQQIFLHEFSSAYSKYVGETLQPKNYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 76
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
833-904 2.88e-44

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193593  Cd Length: 72  Bit Score: 154.55  E-value: 2.88e-44
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  833 LIQFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTLT 904
Cdd:cd09979     1 LIQFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDYGYTKLIELLEAVPHVLQILGMGSKRLLTLS 72
RRM2_LKAP cd12256
RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
520-608 1.47e-43

RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM2 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


:

Pssm-ID: 409701 [Multi-domain]  Cd Length: 89  Bit Score: 153.29  E-value: 1.47e-43
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  520 FANGADIQISNIDYRLSRKDLQQILQEIFSRHGKVKSMELSPHTDYQLKAIVQMENLQEAISAVNNLHRYKIGSKKIQVS 599
Cdd:cd12256     1 FSNGVDLQVSNLDYRMSRKELQQMLHNQFKRHGKVKSVELSPQTDGSLKASVRVPSLQDAQYAVSQLHRYKIGSKRIQVS 80

                  ....*....
gi 946693235  600 LATGSANKS 608
Cdd:cd12256    81 LATGSSNKS 89
RRM1_LKAP cd12255
RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
240-312 4.62e-42

RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM1 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


:

Pssm-ID: 409700  Cd Length: 73  Bit Score: 148.27  E-value: 4.62e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  240 CHTLLYVYNLPTNRDSKSVSNRLRRLSDNCGGKVLSISGSSAILRFLNQESAERAHKRMENEDVFGNRIIVSF 312
Cdd:cd12255     1 CHTLLYVYNLPTNRDVKSIRNRLRQLSDNCGGKVLSVSGGSAILRFANQESAERAQKRMEGEDVFGNKISVSF 73
LOTUS_5_Limkain_b1 cd09981
The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): ...
993-1063 1.54e-41

The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193595  Cd Length: 71  Bit Score: 146.80  E-value: 1.54e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  993 TKQFSKEVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd09981     1 TKQFSKEVVELLRHQPHFRMPFTKFIPSYHHHFGRQCKLSYYGFTKLLELFEAIPDVVQVLECGEEKYLQL 71
LOTUS_4_Limkain_b1 cd09980
The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): ...
909-980 4.01e-40

The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193594  Cd Length: 72  Bit Score: 142.50  E-value: 4.01e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  909 VKRFTQDLLKLLKSQASKQVIVREFLQAYHWCFSKDWDVTEYGVCELADIISEIPDTTICLTQQDNETVICI 980
Cdd:cd09980     1 VRRFTQDLLRVLKSQASKQVIVKDFGQAYEWCFGRDWDPVDYGLCDLQDLLSEIPDNTIVIEQQDGDKVISI 72
LOTUS_6_Limkain_b1 cd09982
The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): ...
1069-1139 4.34e-40

The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193596  Cd Length: 71  Bit Score: 142.71  E-value: 4.34e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1069 VKALAAQFVKLLRSQKDNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQIQL 1139
Cdd:cd09982     1 VKALAAQLVKLLRSQKDSCLMMCDLLTEYSKTFGYTLRLQDYDVSSVPALMQKLCHVVKVVDTESGKQIQL 71
PIN_limkain_b1_N_like cd10910
N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human ...
82-204 1.02e-39

N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif, this and similar domain architectures are shared by several members of this family, and a function of these architectures in RNA binding or RNA metabolism has been suggested. The function of the N-terminal domain is unknown. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons.


:

Pssm-ID: 350234  Cd Length: 126  Bit Score: 143.53  E-value: 1.02e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   82 PIGVFWDIENCSVPTGRSAIAVVQRIREKFFK--GHREAEFICVCDISKENKEVIEELNNCQVTVAHINATAKNAADDKL 159
Cdd:cd10910     1 KTGVFWDIENCPVPDGYDARRVGPNIRRALRKlgYSGPVSITAYGDLSKVPKDVLSELSSSGVSLVHVPHGGKKAADKKI 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 946693235  160 RQSLRRFADTHTAPATVVLVSTDV-NFALELSDLRHRhGFHIILVH 204
Cdd:cd10910    81 LVDMLLWALDNPPPANIMLISGDVrDFAYALSRLRSR-GYNVLLAY 125
LOTUS_7_Limkain_b1 cd09983
The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): ...
1145-1217 2.69e-39

The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


:

Pssm-ID: 193597  Cd Length: 73  Bit Score: 140.27  E-value: 2.69e-39
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235 1145 LRTLTAQLLVLMMSWDETDFLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEVFTNDLAEECVKL 1217
Cdd:cd09983     1 LRSLTAQLLVLLMSWEGASDLSVEELRQHYESVHGTPLNPCEYGFMSLTELLKSLPYLVEVFTNGGGEEYVRL 73
 
Name Accession Description Interval E-value
MARF1_LOTUS pfam19687
MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis ...
611-821 7.64e-153

MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis regulator and mRNA stability factor 1 (MARF1) protein, an essential regulator of oogenesis required for completion of meiosis and retrotransposon silencing, key to maintain germline integrity. This domain provides RNA-binding properties to this protein, acting as an adapter to recruit targets for the effector domain NYN (pfam01936) at the N-terminal (RNase activity).


Pssm-ID: 437519 [Multi-domain]  Cd Length: 211  Bit Score: 461.84  E-value: 7.64e-153
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   611 QFSSETMTILQDAPACCLPIFKFTEIYEKKFGHKLIASDLYKLTDTVAIRDQGNGRLVCLLPSSQARQSPLGSSQSHDGS 690
Cdd:pfam19687    1 LLSSETISILQDAPACCLPLFKFTEIYEKKFGHKLIVSDLYKLTDTVAIREQGNGRLVCLLPSSQARQSPLGSSQSHDGS 80
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   691 SANCSPIIFEELEYHEPICKQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSD 770
Cdd:pfam19687   81 SANGSPIIFEELEYHEPVCRQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPECYAAKFSP 160
                          170       180       190       200       210
                   ....*....|....*....|....*....|....*....|....*....|.
gi 946693235   771 LEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKWIHNKPPPPTTDPWL 821
Cdd:pfam19687  161 LQLGSETMEGVPLEHLITCVPSITIVTAQNGFKVIKWIHNKPPPPNTDPWL 211
LOTUS_8_Limkain_b1 cd09984
The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): ...
1220-1295 1.33e-48

The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193598  Cd Length: 76  Bit Score: 167.01  E-value: 1.33e-48
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235 1220 LYLFAKNVRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 1295
Cdd:cd09984     1 LYQFAKNVRSLLHTYHYQQIFLHEFSSAYSKYVGETLQPKNYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 76
LOTUS_2_Limkain_b1 cd09978
The second LOTUS domain on Limkain b1(LKAP); The second LOTUS domain on Limkain b1(LKAP): ...
737-807 1.62e-46

The second LOTUS domain on Limkain b1(LKAP); The second LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization


Pssm-ID: 193592  Cd Length: 71  Bit Score: 160.92  E-value: 1.62e-46
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  737 LKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSDLEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKW 807
Cdd:cd09978     1 LKTFAPQVHSLLQTHEGTVPLLSFPDCYAAEFSALEVVQEGQGGVPLEHLITCIPGVNIATAQNGIKVIKW 71
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
833-904 2.88e-44

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193593  Cd Length: 72  Bit Score: 154.55  E-value: 2.88e-44
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  833 LIQFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTLT 904
Cdd:cd09979     1 LIQFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDYGYTKLIELLEAVPHVLQILGMGSKRLLTLS 72
RRM2_LKAP cd12256
RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
520-608 1.47e-43

RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM2 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


Pssm-ID: 409701 [Multi-domain]  Cd Length: 89  Bit Score: 153.29  E-value: 1.47e-43
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  520 FANGADIQISNIDYRLSRKDLQQILQEIFSRHGKVKSMELSPHTDYQLKAIVQMENLQEAISAVNNLHRYKIGSKKIQVS 599
Cdd:cd12256     1 FSNGVDLQVSNLDYRMSRKELQQMLHNQFKRHGKVKSVELSPQTDGSLKASVRVPSLQDAQYAVSQLHRYKIGSKRIQVS 80

                  ....*....
gi 946693235  600 LATGSANKS 608
Cdd:cd12256    81 LATGSSNKS 89
RRM1_LKAP cd12255
RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
240-312 4.62e-42

RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM1 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


Pssm-ID: 409700  Cd Length: 73  Bit Score: 148.27  E-value: 4.62e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  240 CHTLLYVYNLPTNRDSKSVSNRLRRLSDNCGGKVLSISGSSAILRFLNQESAERAHKRMENEDVFGNRIIVSF 312
Cdd:cd12255     1 CHTLLYVYNLPTNRDVKSIRNRLRQLSDNCGGKVLSVSGGSAILRFANQESAERAQKRMEGEDVFGNKISVSF 73
LOTUS_5_Limkain_b1 cd09981
The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): ...
993-1063 1.54e-41

The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193595  Cd Length: 71  Bit Score: 146.80  E-value: 1.54e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  993 TKQFSKEVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd09981     1 TKQFSKEVVELLRHQPHFRMPFTKFIPSYHHHFGRQCKLSYYGFTKLLELFEAIPDVVQVLECGEEKYLQL 71
LOTUS_4_Limkain_b1 cd09980
The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): ...
909-980 4.01e-40

The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193594  Cd Length: 72  Bit Score: 142.50  E-value: 4.01e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  909 VKRFTQDLLKLLKSQASKQVIVREFLQAYHWCFSKDWDVTEYGVCELADIISEIPDTTICLTQQDNETVICI 980
Cdd:cd09980     1 VRRFTQDLLRVLKSQASKQVIVKDFGQAYEWCFGRDWDPVDYGLCDLQDLLSEIPDNTIVIEQQDGDKVISI 72
LOTUS_6_Limkain_b1 cd09982
The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): ...
1069-1139 4.34e-40

The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193596  Cd Length: 71  Bit Score: 142.71  E-value: 4.34e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1069 VKALAAQFVKLLRSQKDNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQIQL 1139
Cdd:cd09982     1 VKALAAQLVKLLRSQKDSCLMMCDLLTEYSKTFGYTLRLQDYDVSSVPALMQKLCHVVKVVDTESGKQIQL 71
PIN_limkain_b1_N_like cd10910
N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human ...
82-204 1.02e-39

N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif, this and similar domain architectures are shared by several members of this family, and a function of these architectures in RNA binding or RNA metabolism has been suggested. The function of the N-terminal domain is unknown. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons.


Pssm-ID: 350234  Cd Length: 126  Bit Score: 143.53  E-value: 1.02e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   82 PIGVFWDIENCSVPTGRSAIAVVQRIREKFFK--GHREAEFICVCDISKENKEVIEELNNCQVTVAHINATAKNAADDKL 159
Cdd:cd10910     1 KTGVFWDIENCPVPDGYDARRVGPNIRRALRKlgYSGPVSITAYGDLSKVPKDVLSELSSSGVSLVHVPHGGKKAADKKI 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 946693235  160 RQSLRRFADTHTAPATVVLVSTDV-NFALELSDLRHRhGFHIILVH 204
Cdd:cd10910    81 LVDMLLWALDNPPPANIMLISGDVrDFAYALSRLRSR-GYNVLLAY 125
LOTUS_7_Limkain_b1 cd09983
The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): ...
1145-1217 2.69e-39

The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193597  Cd Length: 73  Bit Score: 140.27  E-value: 2.69e-39
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235 1145 LRTLTAQLLVLMMSWDETDFLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEVFTNDLAEECVKL 1217
Cdd:cd09983     1 LRSLTAQLLVLLMSWEGASDLSVEELRQHYESVHGTPLNPCEYGFMSLTELLKSLPYLVEVFTNGGGEEYVRL 73
NYN pfam01936
NYN domain; These domains are found in the eukaryotic proteins typified by the Nedd4-binding ...
82-220 7.19e-23

NYN domain; These domains are found in the eukaryotic proteins typified by the Nedd4-binding protein 1 and the bacterial YacP-like proteins (Nedd4-BP1, YacP nucleases; NYN domains). The NYN domain shares a common protein fold with two other previously characterized groups of nucleases, namely the PIN (PilT N-terminal) and FLAP/5' --> 3' exonuclease superfamilies. These proteins share a common set of 4 acidic conserved residues that are predicted to constitute their active site. Based on the conservation of the acidic residues and structural elements Aravind and colleagues suggest that PIN and NYN domains are likely to bind only a single metal ion, unlike the FLAP/5' --> 3' exonuclease superfamily, which binds two metal ions. Based on conserved gene neighborhoods Aravind and colleagues infer that the bacterial members are likely to be components of the processome/degradsome that process tRNAs or ribosomal RNAs.


Pssm-ID: 426520  Cd Length: 137  Bit Score: 95.81  E-value: 7.19e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235    82 PIGVFWDIENCSVPTGRSAIAVVQRIREkffkgHREA-EFICVCDISKEN-KEVIEELNNCQVTVAHINAT-AKNAADDK 158
Cdd:pfam01936    1 RVAVFIDGENCPLPDGVDYRKVLEEIRS-----GGEVvRARAYGNWGDPDlRKFPDALSSTGIPVQHKPLTkGKNAVDVG 75
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235   159 LRQSLRRFADTHTaPATVVLVSTDVNFALELSDLRHRHGF-HIILVHKNQASEALLHHAHELI 220
Cdd:pfam01936   76 LAVDALELAYDNN-PDTFVLVSGDGDFAPLLERLRERGKRvEVLGAEEPSTSDALINAADRFI 137
MARF1_RRM1 pfam11608
MARF1, RNA recognition motif 1; MARF1 (also known as Limkain-b1) is an essential protein for ...
242-314 1.41e-22

MARF1, RNA recognition motif 1; MARF1 (also known as Limkain-b1) is an essential protein for controlling meiosis and retrotransposon surveillance in mouse oocytes, first described as a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes. It may function both as an adaptor to recruit specific RNA targets and an effector to catalyze the specific cleavages of target RNAs. MARF1 contains an N-terminal NYN domain, two central RRMs, and C-terminal OST-HTH/LOTUS domains. This domain represents the RNA recognition motif 1 (RRM1) of MARF1.


Pssm-ID: 463307  Cd Length: 89  Bit Score: 93.26  E-value: 1.41e-22
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235   242 TLLYVYNLPTNRDS---KSVSNRLRRLSDNCGGKVLSISGSSAILRFLNQESAERAHKRMENEDVFGNRIIVSFTP 314
Cdd:pfam11608    3 NLLFVRNLPVNCDKslqNAVKHRLRRLSDNCGGKVLGISQGTAVLRFGSPEAASRACKRMENEDVYGHRISLSFSL 78
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1227-1289 1.57e-13

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 66.43  E-value: 1.57e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  1227 VRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVV 1289
Cdd:pfam12872    2 LISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
839-902 8.78e-12

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 61.80  E-value: 8.78e-12
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235   839 EVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLT 902
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
999-1062 2.12e-10

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 57.57  E-value: 2.12e-10
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235   999 EVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILT 1062
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1075-1137 2.43e-09

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 54.87  E-value: 2.43e-09
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  1075 QFVKLLRSQKDNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQI 1137
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLV 63
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1151-1205 1.20e-08

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 52.94  E-value: 1.20e-08
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*
gi 946693235  1151 QLLVLMMSWDETDfLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEV 1205
Cdd:pfam12872    1 ELISLLRSDPDGW-ASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEI 54
RRM smart00360
RNA recognition motif;
528-598 3.19e-08

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 51.83  E-value: 3.19e-08
                            10        20        30        40        50        60        70
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235    528 ISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK---AIVQMENLQEAISAVNNLHRYKIGSKKIQV 598
Cdd:smart00360    4 VGNLPPDTTEEELR----ELFSKFGKVESVRLVRDKETGKSkgfAFVEFESEEDAEKALEALNGKELDGRPLKV 73
 
Name Accession Description Interval E-value
MARF1_LOTUS pfam19687
MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis ...
611-821 7.64e-153

MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis regulator and mRNA stability factor 1 (MARF1) protein, an essential regulator of oogenesis required for completion of meiosis and retrotransposon silencing, key to maintain germline integrity. This domain provides RNA-binding properties to this protein, acting as an adapter to recruit targets for the effector domain NYN (pfam01936) at the N-terminal (RNase activity).


Pssm-ID: 437519 [Multi-domain]  Cd Length: 211  Bit Score: 461.84  E-value: 7.64e-153
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   611 QFSSETMTILQDAPACCLPIFKFTEIYEKKFGHKLIASDLYKLTDTVAIRDQGNGRLVCLLPSSQARQSPLGSSQSHDGS 690
Cdd:pfam19687    1 LLSSETISILQDAPACCLPLFKFTEIYEKKFGHKLIVSDLYKLTDTVAIREQGNGRLVCLLPSSQARQSPLGSSQSHDGS 80
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   691 SANCSPIIFEELEYHEPICKQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSD 770
Cdd:pfam19687   81 SANGSPIIFEELEYHEPVCRQHCLNKDFSEHEFDPDSYQIPFVILSLKTFAPQVHSLLQTHEGTVPLLSFPECYAAKFSP 160
                          170       180       190       200       210
                   ....*....|....*....|....*....|....*....|....*....|.
gi 946693235   771 LEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKWIHNKPPPPTTDPWL 821
Cdd:pfam19687  161 LQLGSETMEGVPLEHLITCVPSITIVTAQNGFKVIKWIHNKPPPPNTDPWL 211
LOTUS_8_Limkain_b1 cd09984
The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): ...
1220-1295 1.33e-48

The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193598  Cd Length: 76  Bit Score: 167.01  E-value: 1.33e-48
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235 1220 LYLFAKNVRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 1295
Cdd:cd09984     1 LYQFAKNVRSLLHTYHYQQIFLHEFSSAYSKYVGETLQPKNYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMK 76
LOTUS_2_Limkain_b1 cd09978
The second LOTUS domain on Limkain b1(LKAP); The second LOTUS domain on Limkain b1(LKAP): ...
737-807 1.62e-46

The second LOTUS domain on Limkain b1(LKAP); The second LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization


Pssm-ID: 193592  Cd Length: 71  Bit Score: 160.92  E-value: 1.62e-46
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  737 LKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSDLEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKW 807
Cdd:cd09978     1 LKTFAPQVHSLLQTHEGTVPLLSFPDCYAAEFSALEVVQEGQGGVPLEHLITCIPGVNIATAQNGIKVIKW 71
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
833-904 2.88e-44

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193593  Cd Length: 72  Bit Score: 154.55  E-value: 2.88e-44
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  833 LIQFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTLT 904
Cdd:cd09979     1 LIQFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDYGYTKLIELLEAVPHVLQILGMGSKRLLTLS 72
RRM2_LKAP cd12256
RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
520-608 1.47e-43

RNA recognition motif 2 (RRM2) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM2 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


Pssm-ID: 409701 [Multi-domain]  Cd Length: 89  Bit Score: 153.29  E-value: 1.47e-43
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  520 FANGADIQISNIDYRLSRKDLQQILQEIFSRHGKVKSMELSPHTDYQLKAIVQMENLQEAISAVNNLHRYKIGSKKIQVS 599
Cdd:cd12256     1 FSNGVDLQVSNLDYRMSRKELQQMLHNQFKRHGKVKSVELSPQTDGSLKASVRVPSLQDAQYAVSQLHRYKIGSKRIQVS 80

                  ....*....
gi 946693235  600 LATGSANKS 608
Cdd:cd12256    81 LATGSSNKS 89
RRM1_LKAP cd12255
RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily ...
240-312 4.62e-42

RNA recognition motif 1 (RRM1) found in Limkain-b1 (LKAP) and similar proteins; This subfamily corresponds to the RRM1 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes.


Pssm-ID: 409700  Cd Length: 73  Bit Score: 148.27  E-value: 4.62e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  240 CHTLLYVYNLPTNRDSKSVSNRLRRLSDNCGGKVLSISGSSAILRFLNQESAERAHKRMENEDVFGNRIIVSF 312
Cdd:cd12255     1 CHTLLYVYNLPTNRDVKSIRNRLRQLSDNCGGKVLSVSGGSAILRFANQESAERAQKRMEGEDVFGNKISVSF 73
LOTUS_5_Limkain_b1 cd09981
The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): ...
993-1063 1.54e-41

The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193595  Cd Length: 71  Bit Score: 146.80  E-value: 1.54e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  993 TKQFSKEVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd09981     1 TKQFSKEVVELLRHQPHFRMPFTKFIPSYHHHFGRQCKLSYYGFTKLLELFEAIPDVVQVLECGEEKYLQL 71
LOTUS_4_Limkain_b1 cd09980
The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): ...
909-980 4.01e-40

The fourth LOTUS domain on Limkain b1(LKAP); The fourth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193594  Cd Length: 72  Bit Score: 142.50  E-value: 4.01e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  909 VKRFTQDLLKLLKSQASKQVIVREFLQAYHWCFSKDWDVTEYGVCELADIISEIPDTTICLTQQDNETVICI 980
Cdd:cd09980     1 VRRFTQDLLRVLKSQASKQVIVKDFGQAYEWCFGRDWDPVDYGLCDLQDLLSEIPDNTIVIEQQDGDKVISI 72
LOTUS_6_Limkain_b1 cd09982
The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): ...
1069-1139 4.34e-40

The sixth LOTUS domain on Limkain b1(LKAP); The sixth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193596  Cd Length: 71  Bit Score: 142.71  E-value: 4.34e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1069 VKALAAQFVKLLRSQKDNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQIQL 1139
Cdd:cd09982     1 VKALAAQLVKLLRSQKDSCLMMCDLLTEYSKTFGYTLRLQDYDVSSVPALMQKLCHVVKVVDTESGKQIQL 71
PIN_limkain_b1_N_like cd10910
N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human ...
82-204 1.02e-39

N-terminal LabA-like PIN domain of limkain b1 and similar proteins; Limkain b1 is a human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif, this and similar domain architectures are shared by several members of this family, and a function of these architectures in RNA binding or RNA metabolism has been suggested. The function of the N-terminal domain is unknown. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons.


Pssm-ID: 350234  Cd Length: 126  Bit Score: 143.53  E-value: 1.02e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   82 PIGVFWDIENCSVPTGRSAIAVVQRIREKFFK--GHREAEFICVCDISKENKEVIEELNNCQVTVAHINATAKNAADDKL 159
Cdd:cd10910     1 KTGVFWDIENCPVPDGYDARRVGPNIRRALRKlgYSGPVSITAYGDLSKVPKDVLSELSSSGVSLVHVPHGGKKAADKKI 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 946693235  160 RQSLRRFADTHTAPATVVLVSTDV-NFALELSDLRHRhGFHIILVH 204
Cdd:cd10910    81 LVDMLLWALDNPPPANIMLISGDVrDFAYALSRLRSR-GYNVLLAY 125
LOTUS_7_Limkain_b1 cd09983
The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): ...
1145-1217 2.69e-39

The seventh LOTUS domain on Limkain b1(LKAP); The seventh LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193597  Cd Length: 73  Bit Score: 140.27  E-value: 2.69e-39
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235 1145 LRTLTAQLLVLMMSWDETDFLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEVFTNDLAEECVKL 1217
Cdd:cd09983     1 LRSLTAQLLVLLMSWEGASDLSVEELRQHYESVHGTPLNPCEYGFMSLTELLKSLPYLVEVFTNGGGEEYVRL 73
LOTUS_1_Limkain_b1 cd09977
The first LOTUS domain on Limkain b1(LKAP); The first LOTUS domain on Limkain b1(LKAP): ...
609-670 3.16e-34

The first LOTUS domain on Limkain b1(LKAP); The first LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193591  Cd Length: 62  Bit Score: 125.39  E-value: 3.16e-34
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  609 LSQFSSETMTILQDAPACCLPIFKFTEIYEKKFGHKLIASDLYKLTDTVAIRDQGNGRLVCL 670
Cdd:cd09977     1 LSLLSSETVSILQDAPACCLPLFKFTEIYEKKFGHKLAVSDLYRLTDTVAIREQGGGRLVCL 62
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
995-1064 1.09e-29

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193593  Cd Length: 72  Bit Score: 112.95  E-value: 1.09e-29
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  995 QFSKEVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTLT 1064
Cdd:cd09979     3 QFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDYGYTKLIELLEAVPHVLQILGMGSKRLLTLS 72
LOTUS_5_Limkain_b1 cd09981
The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): ...
835-903 6.95e-27

The fifth LOTUS domain on Limkain b1(LKAP); The fifth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193595  Cd Length: 71  Bit Score: 104.81  E-value: 6.95e-27
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 946693235  835 QFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTL 903
Cdd:cd09981     3 QFSKEVVELLRHQPHFRMPFTKFIPSYHHHFGRQCKLSYYGFTKLLELFEAIPDVVQVLECGEEKYLQL 71
NYN pfam01936
NYN domain; These domains are found in the eukaryotic proteins typified by the Nedd4-binding ...
82-220 7.19e-23

NYN domain; These domains are found in the eukaryotic proteins typified by the Nedd4-binding protein 1 and the bacterial YacP-like proteins (Nedd4-BP1, YacP nucleases; NYN domains). The NYN domain shares a common protein fold with two other previously characterized groups of nucleases, namely the PIN (PilT N-terminal) and FLAP/5' --> 3' exonuclease superfamilies. These proteins share a common set of 4 acidic conserved residues that are predicted to constitute their active site. Based on the conservation of the acidic residues and structural elements Aravind and colleagues suggest that PIN and NYN domains are likely to bind only a single metal ion, unlike the FLAP/5' --> 3' exonuclease superfamily, which binds two metal ions. Based on conserved gene neighborhoods Aravind and colleagues infer that the bacterial members are likely to be components of the processome/degradsome that process tRNAs or ribosomal RNAs.


Pssm-ID: 426520  Cd Length: 137  Bit Score: 95.81  E-value: 7.19e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235    82 PIGVFWDIENCSVPTGRSAIAVVQRIREkffkgHREA-EFICVCDISKEN-KEVIEELNNCQVTVAHINAT-AKNAADDK 158
Cdd:pfam01936    1 RVAVFIDGENCPLPDGVDYRKVLEEIRS-----GGEVvRARAYGNWGDPDlRKFPDALSSTGIPVQHKPLTkGKNAVDVG 75
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235   159 LRQSLRRFADTHTaPATVVLVSTDVNFALELSDLRHRHGF-HIILVHKNQASEALLHHAHELI 220
Cdd:pfam01936   76 LAVDALELAYDNN-PDTFVLVSGDGDFAPLLERLRERGKRvEVLGAEEPSTSDALINAADRFI 137
MARF1_RRM1 pfam11608
MARF1, RNA recognition motif 1; MARF1 (also known as Limkain-b1) is an essential protein for ...
242-314 1.41e-22

MARF1, RNA recognition motif 1; MARF1 (also known as Limkain-b1) is an essential protein for controlling meiosis and retrotransposon surveillance in mouse oocytes, first described as a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes. It may function both as an adaptor to recruit specific RNA targets and an effector to catalyze the specific cleavages of target RNAs. MARF1 contains an N-terminal NYN domain, two central RRMs, and C-terminal OST-HTH/LOTUS domains. This domain represents the RNA recognition motif 1 (RRM1) of MARF1.


Pssm-ID: 463307  Cd Length: 89  Bit Score: 93.26  E-value: 1.41e-22
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235   242 TLLYVYNLPTNRDS---KSVSNRLRRLSDNCGGKVLSISGSSAILRFLNQESAERAHKRMENEDVFGNRIIVSFTP 314
Cdd:pfam11608    3 NLLFVRNLPVNCDKslqNAVKHRLRRLSDNCGGKVLGISQGTAVLRFGSPEAASRACKRMENEDVYGHRISLSFSL 78
PIN_LabA-like cd06167
PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins; ...
84-205 3.21e-22

PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins; The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing. It is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system. In particular, LabA seems necessary for KaiC-dependent repression of gene expression. This family also includes the N-terminal domain of limkain b1, a human autoantigen associated with cytoplasmic vesicles. Other members are the LabA-like PIN domains of human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family.


Pssm-ID: 350201  Cd Length: 113  Bit Score: 93.25  E-value: 3.21e-22
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   84 GVFWDIENCSVPTGrsaiAVVQRIREKFFKGhreAEFICVCDIsKENKEVIEELNNCQVTVAHINATAKNAADDKLRQSL 163
Cdd:cd06167     1 GVLVDADNCSNGFG----ALILRRYAGLFLQ---MGFEKYANI-NAQPLLVPPSNNRGFTVIRVAAKRKDAADVALVRQA 72
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 946693235  164 RRFADTHTaPATVVLVSTDvnfALELSDLRHR---HGFHIILVHK 205
Cdd:cd06167    73 GRLAYTGA-PDTVVLVSGD---KLDFSDLIEKakeAGLNVIVVGP 113
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
833-903 5.34e-19

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 82.28  E-value: 5.34e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  833 LIQFSREVIDLLKSQPSCIiPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTL 903
Cdd:cd08824     1 LKQLAKQLRSLLQSYPGGL-PLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
993-1063 4.65e-18

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 79.59  E-value: 4.65e-18
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  993 TKQFSKEVVDLLRHQTHfRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd08824     1 LKQLAKQLRSLLQSYPG-GLPLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
1220-1290 2.76e-16

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 74.58  E-value: 2.76e-16
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1220 LYLFAKNVRSLLHTYHyQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVL 1290
Cdd:cd08824     1 LKQLAKQLRSLLQSYP-GGLPLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
909-979 5.84e-14

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 68.03  E-value: 5.84e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  909 VKRFTQDLLKLLKSQaSKQVIVREFLQAYHWCFSKDWDVTEYGVCELADIISEIPDTTICLTQQDNETVIC 979
Cdd:cd08824     1 LKQLAKQLRSLLQSY-PGGLPLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1227-1289 1.57e-13

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 66.43  E-value: 1.57e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  1227 VRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVV 1289
Cdd:pfam12872    2 LISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
1069-1139 6.07e-13

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 65.33  E-value: 6.07e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1069 VKALAAQFVKLLRSQKdNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQIQL 1139
Cdd:cd08824     1 LKQLAKQLRSLLQSYP-GGLPLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
839-902 8.78e-12

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 61.80  E-value: 8.78e-12
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235   839 EVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLT 902
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
737-807 1.82e-11

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 61.10  E-value: 1.82e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  737 LKTFAPQVHSLLQTHEGTVPLLSFPDCYTSEFSDlEIVPEGQGGVPLEHLITCVPGVNIATAQNGIKVVKW 807
Cdd:cd08824     1 LKQLAKQLRSLLQSYPGGLPLSKLPQLYKKKFGK-PLDLSEYGFSKLSDLLEALPGVVIVLSQGGERIVSL 70
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
999-1062 2.12e-10

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 57.57  E-value: 2.12e-10
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235   999 EVVDLLRHQTHFRMPFNKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILT 1062
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLVV 64
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
526-599 2.78e-10

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 57.68  E-value: 2.78e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235  526 IQISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVS 599
Cdd:cd00590     1 LFVGNLPPDTTEEDLR----ELFSKFGEVVSVRIVRDRDGKSKgfAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
1145-1217 8.96e-10

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 56.09  E-value: 8.96e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235 1145 LRTLTAQLLVLMMSWDETdfLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEVFTNDlAEECVKL 1217
Cdd:cd08824     1 LKQLAKQLRSLLQSYPGG--LPLSKLPQLYKKKFGKPLDLSEYGFSKLSDLLEALPGVVIVLSQG-GERIVSL 70
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1075-1137 2.43e-09

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 54.87  E-value: 2.43e-09
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235  1075 QFVKLLRSQKDNCLMMTDLLTEYSKTFGYSLRLHDYDVSSVLALMQKLCHVVKVAETESGKQI 1137
Cdd:pfam12872    1 ELISLLRSDPDGWASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEIEKRGGGGLV 63
OST-HTH pfam12872
OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate ...
1151-1205 1.20e-08

OST-HTH/LOTUS domain; A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains.


Pssm-ID: 463735  Cd Length: 64  Bit Score: 52.94  E-value: 1.20e-08
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*
gi 946693235  1151 QLLVLMMSWDETDfLSIDQLKRHYETVHSAPLNPCEYGFMTLTELLKSLPYLVEV 1205
Cdd:pfam12872    1 ELISLLRSDPDGW-ASLSELGSEYRKLFGEDFDPRNYGFSKLSDLLKAIPDVFEI 54
RRM smart00360
RNA recognition motif;
528-598 3.19e-08

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 51.83  E-value: 3.19e-08
                            10        20        30        40        50        60        70
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 946693235    528 ISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK---AIVQMENLQEAISAVNNLHRYKIGSKKIQV 598
Cdd:smart00360    4 VGNLPPDTTEEELR----ELFSKFGKVESVRLVRDKETGKSkgfAFVEFESEEDAEKALEALNGKELDGRPLKV 73
LOTUS_8_Limkain_b1 cd09984
The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): ...
833-903 6.69e-06

The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193598  Cd Length: 76  Bit Score: 45.29  E-value: 6.69e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  833 LIQFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDYGYSKLLELLEAVPHVLQILGMGSKRLLTL 903
Cdd:cd09984     1 LYQFAKNVRSLLHTYHYQQIFLHEFSSAYSKYVGETLQPKNYGYNSLEELLGAIPQVVWIKGHGHKRIVVL 71
LOTUS cd08824
LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and ...
609-670 2.80e-05

LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7; LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193585 [Multi-domain]  Cd Length: 70  Bit Score: 43.38  E-value: 2.80e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  609 LSQFSSETMTILQDAPaCCLPIFKFTEIYEKKFGHKL---------IASDLYKLTDTVAIRDQGNGRLVCL 670
Cdd:cd08824     1 LKQLAKQLRSLLQSYP-GGLPLSKLPQLYKKKFGKPLdlseygfskLSDLLEALPGVVIVLSQGGERIVSL 70
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
535-604 3.19e-05

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 43.58  E-value: 3.19e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  535 LSRKDLQQILQEIFSRHGKVKSMELSPHTDYqlkAIVQMENLQEAISAVNNLHRYKIGSKKIQVSLATGS 604
Cdd:cd12227    10 LSKKVTQEELKNLFEEYGEIQSIDMIPPRGC---AYVCMKTRQDAHRALQKLKNHKLRGKSIKIAWAPNK 76
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
523-598 3.64e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 43.28  E-value: 3.64e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  523 GADIQISNIDYRLSRKDLQQilqeIFSRHGKVKSMELSP-HTDYQLK----AIVQMENLQEAISAVNNLHRYKIGSKKIQ 597
Cdd:cd21619     1 SNTIYVGNIDMTINEDALEK----IFSRYGQVESVRRPPiHTDKADRttgfGFIKYTDAESAERAMQQADGILLGRRRLV 76

                  .
gi 946693235  598 V 598
Cdd:cd21619    77 V 77
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
609-670 3.78e-05

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193593  Cd Length: 72  Bit Score: 43.23  E-value: 3.78e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  609 LSQFSSETMTILQDAPACCLPIFKFTEIYEKKFGHKLIASD---------LYKLTDTVAIRDQGNGRLVCL 670
Cdd:cd09979     1 LIQFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDygytklielLEAVPHVLQILGMGSKRLLTL 71
LOTUS_3_Limkain_b1 cd09979
The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): ...
1220-1290 4.25e-05

The third LOTUS domain on Limkain b1(LKAP); The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193593  Cd Length: 72  Bit Score: 42.84  E-value: 4.25e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235 1220 LYLFAKNVRSLLHTYHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVL 1290
Cdd:cd09979     1 LIQFSREVIDLLKSQPSCLLPFSRFIPAYHHHFGKQCRVSDYGYTKLIELLEAVPHVLQILGMGSKRLLTL 71
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
526-601 6.43e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 42.67  E-value: 6.43e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  526 IQISNIDYRLSRKDLQQIlqeiFSRHGKVKSMELSPHTDYQLK------AIVQMENLQEAISAVNNLHRYKIGSKKIQVS 599
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKL----LSKYGKIKKFDFLFHKTGPLKgqprgyCFVTFETKEEAEKAIECLNGKLALGKKLVVR 77

                  ..
gi 946693235  600 LA 601
Cdd:cd12355    78 WA 79
LOTUS_TDRD_OSKAR cd09972
The first LOTUS domain in Oskar and Tudor-containing proteins 5 and 7; The first LOTUS domain ...
1225-1297 9.46e-05

The first LOTUS domain in Oskar and Tudor-containing proteins 5 and 7; The first LOTUS domain in Oskar and Tudor-containing proteins 5 and 7: The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation.The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193586  Cd Length: 87  Bit Score: 42.48  E-value: 9.46e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 946693235 1225 KNVRSLLHTyHYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWIKGHGHKRIVVLKNDMKTR 1297
Cdd:cd09972     6 KVLRSLLIS-SKGGLTLSELERDYRELEGEPIPYRKLGYSSLEDFLRSIPDVVTVRSSGGEVLVKAVADEKTA 77
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
528-600 9.75e-05

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 42.18  E-value: 9.75e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 946693235  528 ISNIDYRLSRKDlqqiLQEIFSRHGKVKSMEL--SPHTDYQLKAIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12418     5 VSNLHPDVTEED----LRELFGRVGPVKSVKInyDRSGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
528-601 1.09e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 41.77  E-value: 1.09e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235  528 ISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSLA 601
Cdd:cd12414     4 VRNLPFKCTEDDLK----KLFSKFGKVLEVTIPKKPDGKLRgfAFVQFTNVADAAKAIKGMNGKKIKGRPVAVDWA 75
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
244-311 2.05e-04

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 41.11  E-value: 2.05e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 946693235  244 LYVYNLPTNRDSKSVSNRLRRLsdncgGKVLSI---------SGSSAILRFLNQESAERAHKRMENEDVFGNRIIVS 311
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKF-----GEVVSVrivrdrdgkSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
541-600 2.52e-04

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 41.03  E-value: 2.52e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  541 QQILQEIFSRHGKVKSMELSPHTDYqlkAIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12431    17 REQLLEVFEKYGTVEDIVMLPGKPY---SFVSFKSVEEAAKAYNALNGKELELPQQNVPL 73
LOTUS_3_TDRD5 cd09976
The third LOTUS domain on Tudor-containing protein 5 (TDRD5); The third LOTUS domain on ...
1235-1279 4.02e-04

The third LOTUS domain on Tudor-containing protein 5 (TDRD5); The third LOTUS domain on Tudor-containing protein 5 (TDRD5): TDRD5 contains three N-terminal LOTUS domains and a C-terminal Tudor domain. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice TDRD5 is a component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. The exact molecular function of LOTUS domain on TDRD5 remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193590  Cd Length: 74  Bit Score: 40.48  E-value: 4.02e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 946693235 1235 HYQQIFLHEFPTAYNKYTGEVLQPKIYGYNSLEELLGAIPQVVWI 1279
Cdd:cd09976    15 HPNGLFIALLPTEYKVLFKEELPVKQLGFLSVTELVGSLSDILAI 59
RRM2_hnRNPM_like cd12386
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
526-600 7.62e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409820 [Multi-domain]  Cd Length: 74  Bit Score: 39.65  E-value: 7.62e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 946693235  526 IQISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12386     1 IFVANLDYKVGWKKLK----EVFKLAGKVVRADIREDKDGKSRgmGVVQFEHPIEAVQAISMFNGQMLFDRPMRVKM 73
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
533-600 7.77e-04

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 39.61  E-value: 7.77e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 946693235  533 YRLSRKDLQQILQEIFSRHGKVKSMEL-SPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12377     5 YNLAPDADESLLWQLFGPFGAVQNVKIiRDFTTNKCKgyGFVTMTNYDEAAVAIASLNGYRLGGRVLQVSF 75
MARF1_LOTUS pfam19687
MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis ...
835-950 9.32e-04

MARF1 LOTUS domain; This is the LOTUS domain which is repeated in the C-terminal of of Meiosis regulator and mRNA stability factor 1 (MARF1) protein, an essential regulator of oogenesis required for completion of meiosis and retrotransposon silencing, key to maintain germline integrity. This domain provides RNA-binding properties to this protein, acting as an adapter to recruit targets for the effector domain NYN (pfam01936) at the N-terminal (RNase activity).


Pssm-ID: 437519 [Multi-domain]  Cd Length: 211  Bit Score: 42.36  E-value: 9.32e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235   835 QFSREVIDLLKSQPSCIIPVSKFIPTYHHHFAKQCRVSDygyskllelLEAVPHVLQILGMGSKRLLTLTYRAQVKrftQ 914
Cdd:pfam19687    1 LLSSETISILQDAPACCLPLFKFTEIYEKKFGHKLIVSD---------LYKLTDTVAIREQGNGRLVCLLPSSQAR---Q 68
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....*.
gi 946693235   915 DLLKLLKSQ----ASKQVIVREFLQaYH------WCFSKDWDVTEY 950
Cdd:pfam19687   69 SPLGSSQSHdgssANGSPIIFEELE-YHepvcrqHCLNKDFSEHEF 113
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
544-598 1.09e-03

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 39.16  E-value: 1.09e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 946693235  544 LQEIFSRHGKVKSMEL--SPHTDYQLK-AIVQMENLQEAISAVNNLHRYKIGSKKIQV 598
Cdd:cd12417    16 LKKIFSKYGKVVSAKVvtSARTPGSRCyGYVTMASVEEADLCIKSLNKTELHGRVITV 73
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
528-600 1.12e-03

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 39.24  E-value: 1.12e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 946693235  528 ISNIDYRLSRKDLQqilqEIFSRHGKVKSMELSPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12392     7 VKGLPFSCTKEELE----ELFKQHGTVKDVRLVTYRNGKPKglAYVEYENEADASQAVLKTDGTEIKDHTISVAI 77
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
544-601 2.01e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 38.75  E-value: 2.01e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 946693235  544 LQEIFSRHGKVKSMELS--PHTDYqLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSLA 601
Cdd:cd12324    23 IHDKFAEFGEIKNLHLNldRRTGF-VKgyALVEYETKKEAQAAIEGLNGKELLGQTISVDWA 83
LOTUS_8_Limkain_b1 cd09984
The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): ...
995-1063 2.10e-03

The eighth LOTUS domain on Limkain b1(LKAP); The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193598  Cd Length: 76  Bit Score: 38.35  E-value: 2.10e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 946693235  995 QFSKEVVDLLrHQTHFRMPF-NKFIPSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd09984     3 QFAKNVRSLL-HTYHYQQIFlHEFSSAYSKYVGETLQPKNYGYNSLEELLGAIPQVVWIKGHGHKRIVVL 71
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
526-591 2.36e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 38.32  E-value: 2.36e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235  526 IQISNIDYRLSrkdlQQILQEIFSRHGKVKSMELSPHTDyQLKAIVQMENLQEAISAVNNLHRYKI 591
Cdd:cd12422     4 VTVTNLLYPVT----VDVLHQVFSPYGAVEKIVIFEKGT-GVQALVQFDSVESAEAAKKALNGRNI 64
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
534-598 3.09e-03

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 37.59  E-value: 3.09e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 946693235  534 RLSRKDLQQILQEIFSRHGKVksMELSPHTDYqlkAIVQMENLQEAISAVNNLHRYKIGSKKIQV 598
Cdd:cd12343     6 NLPDAATSEELRALFEKYGKV--TECDIVKNY---AFVHMEKEEDAEDAIKALNGYEFMGSRINV 65
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
528-601 3.33e-03

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 37.90  E-value: 3.33e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235  528 ISNIDYRLSRKDLQQILQEIFSRHGKVksMELSPHTDYQLK--AIVQMENLQEAISAVNNLHRYKIGSKKIQVSLA 601
Cdd:cd12246     4 INNLNEKIKKDELKRSLYALFSQFGPV--LDIVASKSLKMRgqAFVVFKDVESATNALRALQGFPFYGKPMRIQYA 77
LOTUS_2_TDRD5 cd09975
The second LOTUS domain on Tudor-containing protein 5 (TDRD5); The second LOTUS domain on ...
998-1063 4.29e-03

The second LOTUS domain on Tudor-containing protein 5 (TDRD5); The second LOTUS domain on Tudor-containing protein 5 (TDRD5): TDRD5 contains three N-terminal LOTUS domains and a C-terminal Tudor domain. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice TDRD5 is a component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. The exact molecular function of LOTUS domain on TDRD5 remains to be discovered. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization.


Pssm-ID: 193589  Cd Length: 70  Bit Score: 37.16  E-value: 4.29e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 946693235  998 KEVVDLLRHQTHFRMPFNKfipSYHHHFGRQCKLAYYGFTKLLELFEAIPDVLEVLECGEEKILTL 1063
Cdd:cd09975     6 SELKDLLSHSPVLLSELEK---AYVARFGRSFQYTQYGFFSMLEVLSAASDFIIVKQTRTGSLLLL 68
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
544-600 4.99e-03

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 36.99  E-value: 4.99e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 946693235  544 LQEIFSRHGKVKSMELSPHTDYqlkAIVQMENLQEAISAVNNLHRYKIGSKKIQVSL 600
Cdd:cd12340    16 IREIFSPYGPVKEVKMLSDSNF---AFVEFEELEDAIRAKDSVHGRVLNNEPLYVTY 69
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH