MULTISPECIES: MFS transporter [Klebsiella]
MFS transporter( domain architecture ID 13024320)
major facilitator superfamily (MFS) transporter facilitates the transport across cytoplasmic or internal membranes of one or more from a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
15-387 | 1.36e-115 | ||||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. : Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 341.45 E-value: 1.36e-115
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
15-387 | 1.36e-115 | ||||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 341.45 E-value: 1.36e-115
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
6-352 | 7.46e-29 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 115.07 E-value: 7.46e-29
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
18-357 | 6.87e-21 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 92.87 E-value: 6.87e-21
|
||||||||||
PRK08633 | PRK08633 | 2-acyl-glycerophospho-ethanolamine acyltransferase; Validated |
127-391 | 4.81e-06 | ||||||
2-acyl-glycerophospho-ethanolamine acyltransferase; Validated Pssm-ID: 236315 [Multi-domain] Cd Length: 1146 Bit Score: 48.77 E-value: 4.81e-06
|
||||||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
64-373 | 3.10e-05 | ||||||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 45.83 E-value: 3.10e-05
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
15-387 | 1.36e-115 | ||||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 341.45 E-value: 1.36e-115
|
||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
21-387 | 1.48e-35 | ||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 133.86 E-value: 1.48e-35
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
6-352 | 7.46e-29 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 115.07 E-value: 7.46e-29
|
||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
15-368 | 9.82e-25 | ||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 104.98 E-value: 9.82e-25
|
||||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
15-388 | 7.61e-22 | ||||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 95.76 E-value: 7.61e-22
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
18-357 | 6.87e-21 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 92.87 E-value: 6.87e-21
|
||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
31-387 | 2.26e-18 | ||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 85.72 E-value: 2.26e-18
|
||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
56-385 | 6.10e-16 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 78.62 E-value: 6.10e-16
|
||||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
15-385 | 2.59e-14 | ||||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 73.76 E-value: 2.59e-14
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
238-388 | 3.23e-13 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 70.00 E-value: 3.23e-13
|
||||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
38-385 | 4.63e-13 | ||||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 69.95 E-value: 4.63e-13
|
||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
10-387 | 1.23e-12 | ||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 68.75 E-value: 1.23e-12
|
||||||||||
MFS_YxlH_like | cd17490 | Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This ... |
41-390 | 8.27e-12 | ||||||
Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341043 [Multi-domain] Cd Length: 371 Bit Score: 66.09 E-value: 8.27e-12
|
||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
15-385 | 8.96e-12 | ||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 66.03 E-value: 8.96e-12
|
||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
12-192 | 9.85e-12 | ||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 65.68 E-value: 9.85e-12
|
||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
6-387 | 2.27e-10 | ||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 61.42 E-value: 2.27e-10
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
221-385 | 2.55e-10 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 61.28 E-value: 2.55e-10
|
||||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
70-385 | 2.64e-10 | ||||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 61.44 E-value: 2.64e-10
|
||||||||||
MFS_YajR_like | cd17472 | Escherichia coli inner membrane transport protein YajR and similar multidrug-efflux ... |
126-385 | 3.78e-10 | ||||||
Escherichia coli inner membrane transport protein YajR and similar multidrug-efflux transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli inner membrane transport protein YajR and some uncharacterized multidrug-efflux transporters. YajR is a putative proton-driven major facilitator superfamily (MFS) transporter found in many gram-negative bacteria. Unlike most MFS transporters, YajR contains a C-terminal, cytosolic YAM domain, which may play an essential role for the proper functioning of the transporter. YajR-like transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341025 [Multi-domain] Cd Length: 371 Bit Score: 61.08 E-value: 3.78e-10
|
||||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
243-391 | 2.39e-09 | ||||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 57.90 E-value: 2.39e-09
|
||||||||||
MFS_SLC45_SUC | cd17313 | Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily ... |
122-387 | 2.45e-09 | ||||||
Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily of transporters; This group includes the solute carrier 45 (SLC45) family as well as plant sucrose transporters (SUCs or SUTs) and similar proteins such as Schizosaccharomyces pombe general alpha-glucoside permease. the SLC45 family is composed of four (A1-A4) vertebrate proteins as well as related insect proteins such as Drosophila sucrose transporter SCRT or Slc45-1. Members of this group transport sucrose and other sugars like maltose into the cell, with the concomitant uptake of protons (symport system). Plant sucrose transporters are crucial to carbon partitioning, playing a key role in phloem loading/unloading. They play a key role in loading and unloading of sucrose into the phloem and as a result, they control sucrose distribution throughout the whole plant and drive the osmotic flow system in the phloem. They also play a role in the exchange of sucrose between beneficial symbionts (mycorrhiza and Rhizobium) as well as pathogens such as nematodes and parasitic fungi. There are nine sucrose transporter genes in Arabidopsis and five in rice. Vertebrate SLC45 family proteins have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). Mutations in SLC45A2, also called MATP (membrane-associated transporter protein) or melanoma antigen AIM1, cause oculocutaneous albinism type 4 (OCA4), an autosomal recessive disorder of melanin biosynthesis that results in congenital hypopigmentation of ocular and cutaneous tissues. The SLC45 family and related sugar transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340871 [Multi-domain] Cd Length: 421 Bit Score: 58.79 E-value: 2.45e-09
|
||||||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
171-387 | 4.99e-09 | ||||||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 57.58 E-value: 4.99e-09
|
||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
256-388 | 8.14e-09 | ||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 56.80 E-value: 8.14e-09
|
||||||||||
MFS_YcaD_like | cd17477 | YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of ... |
131-387 | 9.49e-09 | ||||||
YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341030 [Multi-domain] Cd Length: 360 Bit Score: 56.41 E-value: 9.49e-09
|
||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
243-388 | 1.59e-08 | ||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 56.02 E-value: 1.59e-08
|
||||||||||
BtlA | COG2270 | MFS-type transporter involved in bile tolerance, Atg22 family [General function prediction ... |
70-387 | 1.78e-08 | ||||||
MFS-type transporter involved in bile tolerance, Atg22 family [General function prediction only]; Pssm-ID: 441871 [Multi-domain] Cd Length: 424 Bit Score: 55.93 E-value: 1.78e-08
|
||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
98-363 | 2.34e-08 | ||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 55.26 E-value: 2.34e-08
|
||||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
67-385 | 2.61e-08 | ||||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 55.30 E-value: 2.61e-08
|
||||||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
22-385 | 7.28e-08 | ||||||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 53.81 E-value: 7.28e-08
|
||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
237-391 | 3.44e-07 | ||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 51.83 E-value: 3.44e-07
|
||||||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
126-385 | 5.06e-07 | ||||||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 51.40 E-value: 5.06e-07
|
||||||||||
MFS_MucK | cd17371 | Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; ... |
68-385 | 7.79e-07 | ||||||
Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily; This subfamily is composed of Acinetobacter sp. Cis,cis-muconate transport protein (MucK), Escherichia coli putative sialic acid transporter 1, and similar proteins. MucK functions in the uptake of muconate and allows Acinetobacter calcoaceticus ADP1 (BD413) to grow on exogenous cis,cis-muconate as the sole carbon source. The MucK subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340929 [Multi-domain] Cd Length: 389 Bit Score: 50.76 E-value: 7.79e-07
|
||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
15-196 | 2.55e-06 | ||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 49.10 E-value: 2.55e-06
|
||||||||||
MFS_ShiA_like | cd17369 | Shikimate transporter and similar proteins of the Major Facilitator Superfamily; This ... |
133-387 | 3.48e-06 | ||||||
Shikimate transporter and similar proteins of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli shikimate transporter (ShiA), inner membrane metabolite transport protein YhjE, and other putative metabolite transporters. ShiA is involved in the uptake of shikimate, an aromatic compound involved in siderophore biosynthesis. It has been suggested that YhjE may mediate the uptake of osmoprotectants. The ShiA-like subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340927 [Multi-domain] Cd Length: 408 Bit Score: 48.68 E-value: 3.48e-06
|
||||||||||
MFS_MdfA_MDR_like | cd17320 | Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major ... |
154-387 | 3.49e-06 | ||||||
Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340878 [Multi-domain] Cd Length: 379 Bit Score: 48.73 E-value: 3.49e-06
|
||||||||||
PRK08633 | PRK08633 | 2-acyl-glycerophospho-ethanolamine acyltransferase; Validated |
127-391 | 4.81e-06 | ||||||
2-acyl-glycerophospho-ethanolamine acyltransferase; Validated Pssm-ID: 236315 [Multi-domain] Cd Length: 1146 Bit Score: 48.77 E-value: 4.81e-06
|
||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
237-391 | 1.99e-05 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 46.27 E-value: 1.99e-05
|
||||||||||
MFS_TRI12_like | cd06179 | Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; ... |
252-386 | 2.46e-05 | ||||||
Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; This family includes Fusarium sporotrichioides trichothecene efflux pump (TRI12), which may play a role in F. sporotrichioides self-protection against trichothecenes. TRI12 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340868 [Multi-domain] Cd Length: 518 Bit Score: 46.08 E-value: 2.46e-05
|
||||||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
64-373 | 3.10e-05 | ||||||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 45.83 E-value: 3.10e-05
|
||||||||||
MFS_GLUT_like | cd17315 | Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator ... |
62-385 | 3.30e-05 | ||||||
Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator Superfamily; This family is composed of glucose transporters (GLUTs) and other sugar transporters including fungal hexose transporters (HXT), bacterial xylose transporter (XylE), plant sugar transport proteins (STP) and polyol transporters (PLT), H(+)-myo-inositol cotransporter (HMIT), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. The GLUT-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340873 [Multi-domain] Cd Length: 365 Bit Score: 45.64 E-value: 3.30e-05
|
||||||||||
MFS_MFSD10 | cd17389 | Major facilitator superfamily domain-containing protein 10; Major facilitator superfamily ... |
70-388 | 3.40e-05 | ||||||
Major facilitator superfamily domain-containing protein 10; Major facilitator superfamily domain-containing protein 10 (MFSD10) is also called tetracycline transporter-like protein (TETRAN). It is expressed in various human tissues, including the kidney. In cultured cells, its overexpression facilitated the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs). MFSD10/TETRAN overexpression cause resistance to some NSAIDs, suggesting that it may be an organic anion transporter that serves as an efflux pump for some NSAIDs and various other organic anions at the final excretion step. MFSD10 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340947 [Multi-domain] Cd Length: 391 Bit Score: 45.73 E-value: 3.40e-05
|
||||||||||
MFS_GLUT_like | cd17315 | Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator ... |
272-391 | 4.20e-05 | ||||||
Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator Superfamily; This family is composed of glucose transporters (GLUTs) and other sugar transporters including fungal hexose transporters (HXT), bacterial xylose transporter (XylE), plant sugar transport proteins (STP) and polyol transporters (PLT), H(+)-myo-inositol cotransporter (HMIT), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. The GLUT-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340873 [Multi-domain] Cd Length: 365 Bit Score: 45.26 E-value: 4.20e-05
|
||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
248-385 | 6.31e-05 | ||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 44.88 E-value: 6.31e-05
|
||||||||||
MFS_MT3072_like | cd17475 | Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar ... |
133-356 | 1.26e-04 | ||||||
Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar transporters of the Major Facilitator Superfamily; This family includes the Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341028 [Multi-domain] Cd Length: 378 Bit Score: 43.77 E-value: 1.26e-04
|
||||||||||
MFS_MFSD6 | cd17335 | Major facilitator superfamily domain-containing protein 6; Human Major facilitator superfamily ... |
137-387 | 1.26e-04 | ||||||
Major facilitator superfamily domain-containing protein 6; Human Major facilitator superfamily domain-containing protein 6 (MFSD6) is also called macrophage MHC class I receptor 2 homolog (MMR2). It has been postulated as a possible receptor for human leukocyte antigen (HLA)-B62. MFSD6 is conserved through evolution and appeared before bilateral animals. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340893 [Multi-domain] Cd Length: 375 Bit Score: 43.73 E-value: 1.26e-04
|
||||||||||
MFS_SLC45_SUC | cd17313 | Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily ... |
288-385 | 1.76e-04 | ||||||
Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily of transporters; This group includes the solute carrier 45 (SLC45) family as well as plant sucrose transporters (SUCs or SUTs) and similar proteins such as Schizosaccharomyces pombe general alpha-glucoside permease. the SLC45 family is composed of four (A1-A4) vertebrate proteins as well as related insect proteins such as Drosophila sucrose transporter SCRT or Slc45-1. Members of this group transport sucrose and other sugars like maltose into the cell, with the concomitant uptake of protons (symport system). Plant sucrose transporters are crucial to carbon partitioning, playing a key role in phloem loading/unloading. They play a key role in loading and unloading of sucrose into the phloem and as a result, they control sucrose distribution throughout the whole plant and drive the osmotic flow system in the phloem. They also play a role in the exchange of sucrose between beneficial symbionts (mycorrhiza and Rhizobium) as well as pathogens such as nematodes and parasitic fungi. There are nine sucrose transporter genes in Arabidopsis and five in rice. Vertebrate SLC45 family proteins have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). Mutations in SLC45A2, also called MATP (membrane-associated transporter protein) or melanoma antigen AIM1, cause oculocutaneous albinism type 4 (OCA4), an autosomal recessive disorder of melanin biosynthesis that results in congenital hypopigmentation of ocular and cutaneous tissues. The SLC45 family and related sugar transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340871 [Multi-domain] Cd Length: 421 Bit Score: 43.38 E-value: 1.76e-04
|
||||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
134-385 | 1.88e-04 | ||||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 43.32 E-value: 1.88e-04
|
||||||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
253-390 | 2.32e-04 | ||||||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 43.13 E-value: 2.32e-04
|
||||||||||
MFS_TetA | cd17388 | Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily ... |
96-208 | 2.79e-04 | ||||||
Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily of transporters; This subfamily is composed of tetracycline resistance proteins similar to Escherichia coli TetA(A), TetA(B), and TetA(E), which are metal-tetracycline/H(+) antiporters that confer resistance to tetracycline by an active tetracycline efflux, which is an energy-dependent process that decreases the accumulation of the antibiotic in cells. TetA-like tetracycline resistance proteins belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340946 [Multi-domain] Cd Length: 385 Bit Score: 42.62 E-value: 2.79e-04
|
||||||||||
MFS_MelB_like | cd17332 | Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major ... |
126-330 | 3.44e-04 | ||||||
Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily; This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340890 [Multi-domain] Cd Length: 424 Bit Score: 42.59 E-value: 3.44e-04
|
||||||||||
PRK12382 | PRK12382 | putative transporter; Provisional |
234-385 | 5.59e-04 | ||||||
putative transporter; Provisional Pssm-ID: 183487 [Multi-domain] Cd Length: 392 Bit Score: 41.59 E-value: 5.59e-04
|
||||||||||
MFS_HMIT_like | cd17360 | H(+)-myo-inositol cotransporter and similar transporters of the Major Facilitator Superfamily; ... |
57-385 | 6.22e-04 | ||||||
H(+)-myo-inositol cotransporter and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of myo-inositol/inositol transporters and similar transporters from vertebrates, plant, and fungi. The human protein is called H(+)-myo-inositol cotransporter/Proton myo-inositol cotransporter (HMIT), or H(+)-myo-inositol symporter, or Solute carrier family 2 member 13 (SLC2A13). HMIT is classified as a Class 3 GLUT (glucose transporter) based on sequence similarity with GLUTs, but it does not transport glucose. It specifically transports myo-inositol and is expressed predominantly in the brain, with high expression in the hippocampus, hypothalamus, cerebellum and brainstem. HMIT may be involved in regulating processes that require high levels of myo-inositol or its phosphorylated derivatives, such as membrane recycling, growth cone dynamics, and synaptic vesicle exocytosis. Arabidopsis Inositol transporter 4 (AtINT4) mediates high-affinity H+ symport of myo-inositol across the plasma membrane. The HMIT-like subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340918 [Multi-domain] Cd Length: 362 Bit Score: 41.49 E-value: 6.22e-04
|
||||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
1-299 | 8.29e-04 | ||||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 40.95 E-value: 8.29e-04
|
||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
13-188 | 9.07e-04 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 41.26 E-value: 9.07e-04
|
||||||||||
MFS_Set | cd17471 | Sugar efflux transporter (Set) family of the Major Facilitator Superfamily of transporters; ... |
154-385 | 9.27e-04 | ||||||
Sugar efflux transporter (Set) family of the Major Facilitator Superfamily of transporters; This family is composed of sugar transporters such as Escherichia coli Sugar efflux transporter SetA, SetB, SetC and other sugar transporters. SetA, SetB, and SetC are involved in the efflux of sugars such as lactose, glucose, IPTG, and substituted glucosides or galactosides. They may be involved in the detoxification of non-metabolizable sugar analogs. The Set family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341024 [Multi-domain] Cd Length: 371 Bit Score: 40.99 E-value: 9.27e-04
|
||||||||||
MFS_XylE_like | cd17359 | D-xylose-proton symporter and similar transporters of the Major Facilitator Superfamily; This ... |
272-391 | 9.41e-04 | ||||||
D-xylose-proton symporter and similar transporters of the Major Facilitator Superfamily; This subfamily includes bacterial transporters such as D-xylose-proton symporter (XylE or XylT), arabinose-proton symporter (AraE), galactose-proton symporter (GalP), major myo-inositol transporter IolT, glucose transport protein, putative metabolite transport proteins YfiG, YncC, and YwtG, and similar proteins. The symporters XylE, AraE, and GalP facilitate the uptake of D-xylose, arabinose, and galactose, respectively, across the boundary membrane with the concomitant transport of protons into the cell. IolT is involved in polyol metabolism and myo-inositol degradation into acetyl-CoA. The XylE-like subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340917 [Multi-domain] Cd Length: 383 Bit Score: 41.01 E-value: 9.41e-04
|
||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
126-387 | 9.74e-04 | ||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 41.02 E-value: 9.74e-04
|
||||||||||
MFS_SLC17 | cd17318 | Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The ... |
264-385 | 1.53e-03 | ||||||
Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The Solute carrier 17 (SLC17) family is primarily involved in the transport of organic anions. There are nime human proteins belonging to this family including: the type I phosphate transporters (SLC17A1-4) that were initially identified as sodium-dependent inorganic phosphate (Pi) transporters but are now known to be involved in tha transport of organic anions; lysosomal acidic sugar transporter (SLC17A5 or sialin), vesicular glutamate transporters (VGluT1#3 or SLC17A7, SLC17A6, and SLC17A8, respectively), and a vesicular nucleotide transporter (VNUT or SLC17A9). SLC17A1 and SLC17A3 have roles in the transport of urate and para-aminohippurate, respectively. The SLC17 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340876 [Multi-domain] Cd Length: 389 Bit Score: 40.29 E-value: 1.53e-03
|
||||||||||
Sugar_tr | pfam00083 | Sugar (and other) transporter; |
216-385 | 1.63e-03 | ||||||
Sugar (and other) transporter; Pssm-ID: 395036 [Multi-domain] Cd Length: 452 Bit Score: 40.33 E-value: 1.63e-03
|
||||||||||
MFS_spinster_like | cd17328 | Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; ... |
100-363 | 1.99e-03 | ||||||
Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340886 [Multi-domain] Cd Length: 405 Bit Score: 39.91 E-value: 1.99e-03
|
||||||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
13-190 | 2.01e-03 | ||||||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 39.86 E-value: 2.01e-03
|
||||||||||
MFS_FsR | cd17478 | Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; ... |
243-396 | 2.22e-03 | ||||||
Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters; Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341031 [Multi-domain] Cd Length: 365 Bit Score: 39.85 E-value: 2.22e-03
|
||||||||||
MFS_HXT | cd17356 | Fungal Hexose transporter subfamily of the Major Facilitator Superfamily of transporters and ... |
272-356 | 2.54e-03 | ||||||
Fungal Hexose transporter subfamily of the Major Facilitator Superfamily of transporters and similar proteins; The fungal hexose transporter (HXT) subfamily is comprised of functionally redundant proteins that function mainly in the transport of glucose, as well as other sugars such as galactose and fructose. Saccharomyces cerevisiae has 20 genes that encode proteins in this family (HXT1 to HXT17, GAL2, SNF3, and RGT2). Seven of these (HXT1-7) encode functional glucose transporters. Gal2p is a galactose transporter, while Rgt2p and Snf3p act as cell surface glucose receptors that initiate signal transduction in response to glucose, functioning in an induction pathway responsible for glucose uptake. Rgt2p is activated by high levels of glucose and stimulates expression of low affinity glucose transporters such as Hxt1p and Hxt3p, while Snf3p generates a glucose signal in response to low levels of glucose, stimulating the expression of high affinity glucose transporters such as Hxt2p and Hxt4p. Schizosaccharomyces pombe contains eight GHT genes (GHT1-8) belonging to this family. Ght1, Ght2, and Ght5 are high-affinity glucose transporters; Ght3 is a high-affinity gluconate transporter; and Ght6 high-affinity fructose transporter. The substrate specificities for Ght4, Ght7, and Ght8 remain undetermined. The HXT subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340914 [Multi-domain] Cd Length: 403 Bit Score: 39.54 E-value: 2.54e-03
|
||||||||||
MFS_MdfA_MDR_like | cd17320 | Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major ... |
243-387 | 2.92e-03 | ||||||
Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340878 [Multi-domain] Cd Length: 379 Bit Score: 39.48 E-value: 2.92e-03
|
||||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
238-389 | 3.22e-03 | ||||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 39.10 E-value: 3.22e-03
|
||||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
237-385 | 3.42e-03 | ||||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 39.12 E-value: 3.42e-03
|
||||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
250-385 | 4.48e-03 | ||||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 39.09 E-value: 4.48e-03
|
||||||||||
MFS_ShiA_like | cd17369 | Shikimate transporter and similar proteins of the Major Facilitator Superfamily; This ... |
2-190 | 4.50e-03 | ||||||
Shikimate transporter and similar proteins of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli shikimate transporter (ShiA), inner membrane metabolite transport protein YhjE, and other putative metabolite transporters. ShiA is involved in the uptake of shikimate, an aromatic compound involved in siderophore biosynthesis. It has been suggested that YhjE may mediate the uptake of osmoprotectants. The ShiA-like subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340927 [Multi-domain] Cd Length: 408 Bit Score: 39.05 E-value: 4.50e-03
|
||||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
251-391 | 5.92e-03 | ||||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 38.37 E-value: 5.92e-03
|
||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
150-385 | 6.06e-03 | ||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 38.68 E-value: 6.06e-03
|
||||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
11-190 | 6.63e-03 | ||||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 38.35 E-value: 6.63e-03
|
||||||||||
Blast search parameters | ||||
|