glyceraldehyde-3-phosphate dehydrogenase [Edwardsiella ictaluri]
type I glyceraldehyde-3-phosphate dehydrogenase( domain architecture ID 11414602)
type I glyceraldehyde-3-phosphate dehydrogenase catalyzes the NAD-dependent oxidative phosphorylation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
GapA | COG0057 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-331 | 0e+00 | ||||||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis : Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 614.71 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
GapA | COG0057 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-331 | 0e+00 | ||||||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 614.71 E-value: 0e+00
|
||||||||||
gapA | PRK15425 | glyceraldehyde-3-phosphate dehydrogenase; |
1-331 | 0e+00 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 185323 [Multi-domain] Cd Length: 331 Bit Score: 578.61 E-value: 0e+00
|
||||||||||
GAPDH-I | TIGR01534 | glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents ... |
4-324 | 3.64e-180 | ||||||
glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the enzyme responsible for the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. Forms exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (1.2.1.59). In some species, NAD- and NADP- utilizing forms exist, generally being responsible for reactions in the anabolic and catabolic directions respectively. Two Pfam models cover the two functional domains of this protein; pfam00044 represents the N-terminal NAD(P)-binding domain and pfam02800 represents the C-terminal catalytic domain. An additional form of gap gene is found in gamma proteobacteria and is responsible for the conversion of erythrose-4-phosphate (E4P) to 4-phospho-erythronate in the biosynthesis of pyridoxine. This pathway of pyridoxine biosynthesis appears to be limited, however, to a relatively small number of bacterial species although it is prevalent among the gamma-proteobacteria. This enzyme is described by TIGR001532. These sequences generally score between trusted and noise to this GAPDH model due to the close evolutionary relationship. There exists the possiblity that some forms of GAPDH may be bifunctional and act on E4P in species which make pyridoxine and via hydroxythreonine and lack a separate E4PDH enzyme (for instance, the GAPDH from Bacillus stearothermophilus has been shown to posess a limited E4PD activity as well as a robust GAPDH activity). There are a great number of sequences in the databases which score between trusted and noise to this model, nearly all of them due to fragmentary sequences. It seems that study of this gene has been carried out in many species utilizing PCR probes which exclude the extreme ends of the consenses used to define this model. The noise level is set relative not to E4PD, but the next closest outliers, the class II GAPDH's (found in archaea, TIGR01546) and aspartate semialdehyde dehydrogenase (ASADH, TIGR01296) both of which have highest-scoring hits around -225 to the prior model. [Energy metabolism, Glycolysis/gluconeogenesis] Pssm-ID: 273675 [Multi-domain] Cd Length: 326 Bit Score: 501.04 E-value: 3.64e-180
|
||||||||||
GAPDH_I_C | cd18126 | C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ... |
150-315 | 5.37e-118 | ||||||
C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). The family corresponds to the ubiquitous NAD+ or NADP+ utilizing type I GAPDH and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467676 Cd Length: 165 Bit Score: 337.12 E-value: 5.37e-118
|
||||||||||
G3PDH_Arsen | NF033735 | ArsJ-associated glyceraldehyde-3-phosphate dehydrogenase; |
5-325 | 1.24e-115 | ||||||
ArsJ-associated glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 468158 [Multi-domain] Cd Length: 324 Bit Score: 337.29 E-value: 1.24e-115
|
||||||||||
Gp_dh_C | pfam02800 | Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain; GAPDH is a tetrameric NAD-binding ... |
155-312 | 1.43e-88 | ||||||
Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain; GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. C-terminal domain is a mixed alpha/antiparallel beta fold. Pssm-ID: 460700 Cd Length: 158 Bit Score: 262.14 E-value: 1.43e-88
|
||||||||||
Gp_dh_N | smart00846 | Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric ... |
3-150 | 1.24e-87 | ||||||
Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. N-terminal domain is a Rossmann NAD(P) binding fold. Pssm-ID: 214851 [Multi-domain] Cd Length: 149 Bit Score: 259.41 E-value: 1.24e-87
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
GapA | COG0057 | Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate ... |
1-331 | 0e+00 | ||||||
Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]; Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 439827 [Multi-domain] Cd Length: 334 Bit Score: 614.71 E-value: 0e+00
|
||||||||||
gapA | PRK15425 | glyceraldehyde-3-phosphate dehydrogenase; |
1-331 | 0e+00 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 185323 [Multi-domain] Cd Length: 331 Bit Score: 578.61 E-value: 0e+00
|
||||||||||
PLN02272 | PLN02272 | glyceraldehyde-3-phosphate dehydrogenase |
3-330 | 0e+00 | ||||||
glyceraldehyde-3-phosphate dehydrogenase Pssm-ID: 177912 [Multi-domain] Cd Length: 421 Bit Score: 544.07 E-value: 0e+00
|
||||||||||
GAPDH-I | TIGR01534 | glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents ... |
4-324 | 3.64e-180 | ||||||
glyceraldehyde-3-phosphate dehydrogenase, type I; This model represents glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the enzyme responsible for the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. Forms exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (1.2.1.59). In some species, NAD- and NADP- utilizing forms exist, generally being responsible for reactions in the anabolic and catabolic directions respectively. Two Pfam models cover the two functional domains of this protein; pfam00044 represents the N-terminal NAD(P)-binding domain and pfam02800 represents the C-terminal catalytic domain. An additional form of gap gene is found in gamma proteobacteria and is responsible for the conversion of erythrose-4-phosphate (E4P) to 4-phospho-erythronate in the biosynthesis of pyridoxine. This pathway of pyridoxine biosynthesis appears to be limited, however, to a relatively small number of bacterial species although it is prevalent among the gamma-proteobacteria. This enzyme is described by TIGR001532. These sequences generally score between trusted and noise to this GAPDH model due to the close evolutionary relationship. There exists the possiblity that some forms of GAPDH may be bifunctional and act on E4P in species which make pyridoxine and via hydroxythreonine and lack a separate E4PDH enzyme (for instance, the GAPDH from Bacillus stearothermophilus has been shown to posess a limited E4PD activity as well as a robust GAPDH activity). There are a great number of sequences in the databases which score between trusted and noise to this model, nearly all of them due to fragmentary sequences. It seems that study of this gene has been carried out in many species utilizing PCR probes which exclude the extreme ends of the consenses used to define this model. The noise level is set relative not to E4PD, but the next closest outliers, the class II GAPDH's (found in archaea, TIGR01546) and aspartate semialdehyde dehydrogenase (ASADH, TIGR01296) both of which have highest-scoring hits around -225 to the prior model. [Energy metabolism, Glycolysis/gluconeogenesis] Pssm-ID: 273675 [Multi-domain] Cd Length: 326 Bit Score: 501.04 E-value: 3.64e-180
|
||||||||||
PTZ00023 | PTZ00023 | glyceraldehyde-3-phosphate dehydrogenase; Provisional |
1-331 | 2.95e-177 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Provisional Pssm-ID: 173322 [Multi-domain] Cd Length: 337 Bit Score: 493.97 E-value: 2.95e-177
|
||||||||||
PRK07729 | PRK07729 | glyceraldehyde-3-phosphate dehydrogenase; Validated |
1-331 | 1.32e-147 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Validated Pssm-ID: 236079 [Multi-domain] Cd Length: 343 Bit Score: 419.14 E-value: 1.32e-147
|
||||||||||
PLN02358 | PLN02358 | glyceraldehyde-3-phosphate dehydrogenase |
3-331 | 1.90e-142 | ||||||
glyceraldehyde-3-phosphate dehydrogenase Pssm-ID: 165999 [Multi-domain] Cd Length: 338 Bit Score: 406.03 E-value: 1.90e-142
|
||||||||||
PTZ00434 | PTZ00434 | cytosolic glyceraldehyde 3-phosphate dehydrogenase; Provisional |
1-330 | 3.34e-134 | ||||||
cytosolic glyceraldehyde 3-phosphate dehydrogenase; Provisional Pssm-ID: 185614 [Multi-domain] Cd Length: 361 Bit Score: 385.95 E-value: 3.34e-134
|
||||||||||
PRK07403 | PRK07403 | type I glyceraldehyde-3-phosphate dehydrogenase; |
2-325 | 5.01e-127 | ||||||
type I glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 180962 [Multi-domain] Cd Length: 337 Bit Score: 366.92 E-value: 5.01e-127
|
||||||||||
GAPDH_I_C | cd18126 | C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ... |
150-315 | 5.37e-118 | ||||||
C-terminal catalytic domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). The family corresponds to the ubiquitous NAD+ or NADP+ utilizing type I GAPDH and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467676 Cd Length: 165 Bit Score: 337.12 E-value: 5.37e-118
|
||||||||||
G3PDH_Arsen | NF033735 | ArsJ-associated glyceraldehyde-3-phosphate dehydrogenase; |
5-325 | 1.24e-115 | ||||||
ArsJ-associated glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 468158 [Multi-domain] Cd Length: 324 Bit Score: 337.29 E-value: 1.24e-115
|
||||||||||
PLN03096 | PLN03096 | glyceraldehyde-3-phosphate dehydrogenase A; Provisional |
3-325 | 1.48e-110 | ||||||
glyceraldehyde-3-phosphate dehydrogenase A; Provisional Pssm-ID: 215572 [Multi-domain] Cd Length: 395 Bit Score: 326.89 E-value: 1.48e-110
|
||||||||||
PLN02237 | PLN02237 | glyceraldehyde-3-phosphate dehydrogenase B |
3-329 | 4.31e-107 | ||||||
glyceraldehyde-3-phosphate dehydrogenase B Pssm-ID: 215131 [Multi-domain] Cd Length: 442 Bit Score: 319.92 E-value: 4.31e-107
|
||||||||||
PRK08955 | PRK08955 | glyceraldehyde-3-phosphate dehydrogenase; Validated |
1-326 | 2.05e-106 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Validated Pssm-ID: 169599 [Multi-domain] Cd Length: 334 Bit Score: 314.36 E-value: 2.05e-106
|
||||||||||
PRK13535 | PRK13535 | erythrose 4-phosphate dehydrogenase; Provisional |
2-324 | 8.22e-102 | ||||||
erythrose 4-phosphate dehydrogenase; Provisional Pssm-ID: 184122 [Multi-domain] Cd Length: 336 Bit Score: 302.75 E-value: 8.22e-102
|
||||||||||
GAPDH_I_N | cd05214 | N-terminal NAD(P)-binding domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ... |
3-149 | 2.70e-93 | ||||||
N-terminal NAD(P)-binding domain of type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; GAPDH plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (EC 1.2.1.59). The family corresponds to the ubiquitous NAD+ or NADP+ utilizing type I GAPDH and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467614 [Multi-domain] Cd Length: 164 Bit Score: 274.27 E-value: 2.70e-93
|
||||||||||
Gp_dh_C | pfam02800 | Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain; GAPDH is a tetrameric NAD-binding ... |
155-312 | 1.43e-88 | ||||||
Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain; GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. C-terminal domain is a mixed alpha/antiparallel beta fold. Pssm-ID: 460700 Cd Length: 158 Bit Score: 262.14 E-value: 1.43e-88
|
||||||||||
Gp_dh_N | smart00846 | Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric ... |
3-150 | 1.24e-87 | ||||||
Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. N-terminal domain is a Rossmann NAD(P) binding fold. Pssm-ID: 214851 [Multi-domain] Cd Length: 149 Bit Score: 259.41 E-value: 1.24e-87
|
||||||||||
GAPDH_C | cd18123 | C-terminal catalytic domain of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar ... |
150-315 | 1.28e-86 | ||||||
C-terminal catalytic domain of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and similar proteins; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. It has been implicated in varied activities including regulating mRNA stability, the regulation of gene expression, induction of apoptosis, intracellular membrane trafficking, iron uptake and transport (via secreted GAPDH), heme metabolism, the maintenance of genomic integrity, and nuclear tRNA export. GAPDH proteins contains an N-terminal NAD(P)-binding domain and a C-terminal catalytic domain. The primarily N-terminal NAD(P)-binding domain contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Phosphatidyl-serine, RNA, and glutathione binding sites have been identified in the N-terminus. Different forms of GAPDH exist which utilize NAD (1.2.1.12), NADP (1.2.1.13) or either (1.2.1.59). GADPH family members include the ubiquitous NAD+ or NADP+ utilizing type I, type II NADP+ utilizing mainly from archaea, and a small clade of dehydrogenases, called erythrose-4-phosphate dehydrogenase (E4PDH) proteins, which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. Pssm-ID: 467673 Cd Length: 164 Bit Score: 257.55 E-value: 1.28e-86
|
||||||||||
PRK08289 | PRK08289 | glyceraldehyde-3-phosphate dehydrogenase; Reviewed |
9-331 | 1.00e-80 | ||||||
glyceraldehyde-3-phosphate dehydrogenase; Reviewed Pssm-ID: 236219 [Multi-domain] Cd Length: 477 Bit Score: 253.31 E-value: 1.00e-80
|
||||||||||
Gp_dh_N | pfam00044 | Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric ... |
3-102 | 4.52e-61 | ||||||
Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain; GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. N-terminal domain is a Rossmann NAD(P) binding fold. Pssm-ID: 459648 [Multi-domain] Cd Length: 101 Bit Score: 190.01 E-value: 4.52e-61
|
||||||||||
GAPDH_N_E4PDH | cd17892 | N-terminal NAD(P)-binding domain of D-erythrose-4-phosphate dehydrogenase (E4PDH) and similar ... |
3-149 | 2.24e-55 | ||||||
N-terminal NAD(P)-binding domain of D-erythrose-4-phosphate dehydrogenase (E4PDH) and similar proteins; E4PDH (EC 1.2.1.72), also called E4P dehydrogenase, catalyzes the NAD-dependent conversion of D-erythrose 4-phosphate (E4P) to 4-phosphoerythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. This enzyme activity appears to have evolved from glyceraldehyde-3-phosphate dehydrogenase (GADPH), whose substrate differs only in the lack of one carbon relative to E4P. E4PDH proteins contain an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal GADPH-like catalytic domain and are members of the GAPDH family of proteins. Pssm-ID: 467615 [Multi-domain] Cd Length: 169 Bit Score: 177.84 E-value: 2.24e-55
|
||||||||||
PTZ00353 | PTZ00353 | glycosomal glyceraldehyde-3-phosphate dehydrogenase; Provisional |
1-326 | 3.67e-54 | ||||||
glycosomal glyceraldehyde-3-phosphate dehydrogenase; Provisional Pssm-ID: 173546 [Multi-domain] Cd Length: 342 Bit Score: 180.46 E-value: 3.67e-54
|
||||||||||
GAPDH_like_C | cd18122 | C-terminal catalytic domain found in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ... |
150-315 | 3.28e-51 | ||||||
C-terminal catalytic domain found in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) superfamily of proteins; GAPDH-like C-terminal catalytic domains are typically associated with a classic N-terminal Rossmann fold NAD(P)-binding domain. This superfamily includes the C-terminal domains of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), N-acetyl-gamma-glutamyl-phosphate reductase (AGPR), aspartate beta-semialdehyde dehydrogenase (ASADH), acetaldehyde dehydrogenase (ALDH) and USG-1 homolog proteins. Pssm-ID: 467672 [Multi-domain] Cd Length: 166 Bit Score: 167.31 E-value: 3.28e-51
|
||||||||||
GAPDH_C_E4PDH | cd23937 | C-terminal catalytic domain of D-erythrose-4-phosphate dehydrogenase (E4PDH) and similar ... |
150-315 | 3.62e-45 | ||||||
C-terminal catalytic domain of D-erythrose-4-phosphate dehydrogenase (E4PDH) and similar proteins; D-erythrose-4-phosphate dehydrogenase (E4PDH; EC 1.2.1.72), also called E4P dehydrogenase, catalyzes the NAD-dependent conversion of D-erythrose 4-phosphate (E4P) to 4-phosphoerythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. This enzyme activity appears to have evolved from glyceraldehyde-3-phosphate dehydrogenase (GADPH), whose substrate differs only in the lack of one carbon relative to E4P. E4PDH proteins contain an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal GADPH-like catalytic domain and are members of the GAPDH superfamily of proteins. Pssm-ID: 467686 Cd Length: 165 Bit Score: 151.41 E-value: 3.62e-45
|
||||||||||
GAPDH-like_N | cd05192 | N-terminal NAD(P)-binding domain of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like ... |
3-154 | 1.31e-20 | ||||||
N-terminal NAD(P)-binding domain of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like family; The GAPDH-like family includes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs), 2,4-diaminopentanoate dehydrogenase (DAPDH), meso-diaminopimelate D-dehydrogenase (meso-DAPDH), and dihydrodipicolinate reductase (DHDPR). GAPDH plays an important role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate. nat-AmDHs catalyze the reductive amination of ketone and aldehyde substrates using NAD(P)H as the hydride source. They play important roles in the efficient asymmetric synthesis of alpha-chiral amines. DAPDH is involved in the ornithine fermentation pathway. It catalyzes the oxidative deamination of (2R,4S)-2,4-diaminopentanoate ((2R,4S)-DAP) to yield 2-amino-4-ketopentanoate (AKP). DHDPR catalyzes the NAD(P)H-dependent reduction of 2,3-dihydrodipicolinate (DHDP) to 2,3,4,5-tetrahydrodipicolinate (THDP). It could also function as a dehydratase in addition to the role of a nucleotide dependent reductase. The model corresponds to the N-terminal NAD(P)-binding domain of GAPDH-like family proteins. It contains a Rossmann fold which combines with the catalytic cysteine-containing C-terminus to form a catalytic cleft. Pssm-ID: 467613 [Multi-domain] Cd Length: 109 Bit Score: 85.10 E-value: 1.31e-20
|
||||||||||
meso-DAPDH_N | cd02270 | N-terminal NAD(P)-binding domain of meso-diaminopimelate D-dehydrogenase (meso-DAPDH) and ... |
3-32 | 9.82e-04 | ||||||
N-terminal NAD(P)-binding domain of meso-diaminopimelate D-dehydrogenase (meso-DAPDH) and similar proteins; Meso-DAPDH (EC 1.4.1.16), also called diaminopimelate dehydrogenase, or meso-DAP dehydrogenase, probably plays a role in lysine biosynthesis. It catalyzes the reversible NADP(H)-dependent reductive amination of L-2-amino-6-oxopimelate, the acyclic form of L-tetrahydrodipicolinate, to generate the meso compound, D,L-2,6-diaminopimelate. DAPDH is a homodimer which is highly specific for meso-DAP and NADP(+) as substrates. Members of this family contain an N-terminal Rossmann fold NAD(P)-binding domain and a C-terminal dimerization domain. Pssm-ID: 467610 [Multi-domain] Cd Length: 151 Bit Score: 39.09 E-value: 9.82e-04
|
||||||||||
PRK04207 | PRK04207 | type II glyceraldehyde-3-phosphate dehydrogenase; |
3-46 | 2.07e-03 | ||||||
type II glyceraldehyde-3-phosphate dehydrogenase; Pssm-ID: 179786 [Multi-domain] Cd Length: 341 Bit Score: 39.43 E-value: 2.07e-03
|
||||||||||
MviM | COG0673 | Predicted dehydrogenase [General function prediction only]; |
1-35 | 4.43e-03 | ||||||
Predicted dehydrogenase [General function prediction only]; Pssm-ID: 440437 [Multi-domain] Cd Length: 295 Bit Score: 38.37 E-value: 4.43e-03
|
||||||||||
DHDPR_N | cd02274 | N-terminal NAD(P)-binding domain of dihydrodipicolinate reductase (DHDPR) and similar proteins; ... |
3-31 | 7.87e-03 | ||||||
N-terminal NAD(P)-binding domain of dihydrodipicolinate reductase (DHDPR) and similar proteins; DHDPR (EC 1.17.1.8), also called 4-hydroxy-tetrahydrodipicolinate reductase, or HTPA reductase, is a product of an essential gene referred to as dapB. It catalyzes the NAD(P)H-dependent reduction of 2,3-dihydrodipicolinate (DHDP) to 2,3,4,5-tetrahydrodipicolinate (THDP). DHDPR could also function as a dehydratase in addition to the role of a nucleotide dependent reductase. DHDPR is a component of the biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine in various bacteria, archaea, cyanobacteria and higher plants. The enzyme is a homotetramer where each monomer is composed of two domains, an N-terminal NAD(P)-binding domain which forms a Rossmann fold, and a C-terminal substrate-binding domain that forms an open, mixed alpha-beta sandwich. Pssm-ID: 467611 [Multi-domain] Cd Length: 139 Bit Score: 36.38 E-value: 7.87e-03
|
||||||||||
Blast search parameters | ||||
|