ATPase-like domain of the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily; The ASKHA ...
2-382
0e+00
ATPase-like domain of the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily; The ASKHA superfamily, also known as actin-like ATPase domain superfamily, includes acetate and sugar kinases, heat-shock cognate 70 (Hsp70) and actin family proteins. They either function as conformational hydrolases (e.g. Hsp70, actin) that perform simple ATP hydrolysis, or as metabolite kinases (e.g. glycerol kinase) that catalyze the transfer of a phosphoryl group from ATP to their cognate substrates. Both activities depend on the presence of specific metal cations. ASKHA superfamily members share a common core fold that includes an actin-like ATPase domain consisting of two subdomains (denoted I _ II) with highly similar ribonuclease (RNase) H-like folds. The fold of each subdomain is characterized by a central five strand beta-sheet and flanking alpha-helices. The two subdomains form an active site cleft in which ATP binds at the bottom. Another common feature of ASKHA superfamily members is the coupling of phosphoryl-group transfer to conformational rearrangement, leading to domain closure. Substrate binding triggers protein motion.
The actual alignment was detected with superfamily member cd11737:
Pssm-ID: 483947 [Multi-domain] Cd Length: 381 Bit Score: 774.50 E-value: 0e+00
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like ...
607-751
9.86e-03
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. EzrA modulates the frequency and position of FtsZ ring formation. The structure contains 5 spectrin like alpha helical repeats.
The actual alignment was detected with superfamily member pfam06160:
Pssm-ID: 428797 [Multi-domain] Cd Length: 542 Bit Score: 39.45 E-value: 9.86e-03
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4 (HSPA4) and similar proteins; ...
2-382
0e+00
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4 (HSPA4) and similar proteins; HSPA4, also called HSP70RY, , HS24/P52, hsp70 RY, and HSPH2, or heat shock 70-related protein APG-2, responds to acidic pH stress, is involved in the radioadaptive response, is required for normal spermatogenesis and is overexpressed in hepatocellular carcinoma. It participates in a pathway along with NBS1 (Nijmegen breakage syndrome 1, also known as p85 or nibrin), heat shock transcription factor 4b (HDF4b), and HSPA14 (belonging to a different HSP70 subfamily) that induces tumor migration, invasion, and transformation. HSPA4 expression in sperm was increased in men with oligozoospermia, especially in those with varicocele. HSPA4 belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466843 [Multi-domain] Cd Length: 381 Bit Score: 774.50 E-value: 0e+00
Hsp70 protein; Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves ...
3-692
0e+00
Hsp70 protein; Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves repeated cycles of substrate binding and release. Hsp70 activity is ATP dependent. Hsp70 proteins are made up of two regions: the amino terminus is the ATPase domain and the carboxyl terminus is the substrate binding region.
Pssm-ID: 394970 [Multi-domain] Cd Length: 598 Bit Score: 638.15 E-value: 0e+00
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like ...
607-751
9.86e-03
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. EzrA modulates the frequency and position of FtsZ ring formation. The structure contains 5 spectrin like alpha helical repeats.
Pssm-ID: 428797 [Multi-domain] Cd Length: 542 Bit Score: 39.45 E-value: 9.86e-03
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4 (HSPA4) and similar proteins; ...
2-382
0e+00
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4 (HSPA4) and similar proteins; HSPA4, also called HSP70RY, , HS24/P52, hsp70 RY, and HSPH2, or heat shock 70-related protein APG-2, responds to acidic pH stress, is involved in the radioadaptive response, is required for normal spermatogenesis and is overexpressed in hepatocellular carcinoma. It participates in a pathway along with NBS1 (Nijmegen breakage syndrome 1, also known as p85 or nibrin), heat shock transcription factor 4b (HDF4b), and HSPA14 (belonging to a different HSP70 subfamily) that induces tumor migration, invasion, and transformation. HSPA4 expression in sperm was increased in men with oligozoospermia, especially in those with varicocele. HSPA4 belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466843 [Multi-domain] Cd Length: 381 Bit Score: 774.50 E-value: 0e+00
nucleotide-binding domain (NBD) of the heat shock 70 kDa protein 4 (HSPA4)-like subfamily; ...
4-381
0e+00
nucleotide-binding domain (NBD) of the heat shock 70 kDa protein 4 (HSPA4)-like subfamily; This subgroup includes the human proteins, HSPA4 (also known as 70-kDa heat shock protein 4; APG-2; HS24/P52; hsp70 RY; HSPH2), HSPA4L (also known as 70-kDa heat shock protein 4-like; APG-1; HSPH3; OSP94), and HSPH1 (also known as heat shock 105kDa/110kDa protein 1; HSP105; HSP105A; HSP105B; NY-CO-25). They belong to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466826 [Multi-domain] Cd Length: 378 Bit Score: 747.95 E-value: 0e+00
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4L (HSPA4L) and similar proteins; ...
2-384
0e+00
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 4L (HSPA4L) and similar proteins; HSPA4L, also called heat shock 70-related protein APG-1, heat-shock protein family A member 4-like protein, HSPA4-like protein, osmotic stress protein 94, or HSPH3, possesses chaperone activity in vitro where it inhibits aggregation of citrate synthase. It is expressed ubiquitously and predominantly in the testis. It is required for normal spermatogenesis and plays a role in osmotolerance. HSPA4L belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466844 [Multi-domain] Cd Length: 383 Bit Score: 714.77 E-value: 0e+00
nucleotide-binding domain (NBD) of heat shock 105kDa/110kDa protein 1 (HSPH1) and similar ...
2-381
0e+00
nucleotide-binding domain (NBD) of heat shock 105kDa/110kDa protein 1 (HSPH1) and similar proteins; HSPH1, also called heat shock protein 105 kDa, antigen NY-CO-25, heat shock 110 kDa protein, acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release. It prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. It inhibits HSPA8/HSC70 ATPase and chaperone activities. HSPH1 belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466845 [Multi-domain] Cd Length: 380 Bit Score: 660.40 E-value: 0e+00
Hsp70 protein; Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves ...
3-692
0e+00
Hsp70 protein; Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves repeated cycles of substrate binding and release. Hsp70 activity is ATP dependent. Hsp70 proteins are made up of two regions: the amino terminus is the ATPase domain and the carboxyl terminus is the substrate binding region.
Pssm-ID: 394970 [Multi-domain] Cd Length: 598 Bit Score: 638.15 E-value: 0e+00
nucleotide-binding domain (NBD) of the 105/110 kDa heat shock protein family; The 105/110 kDa ...
4-381
0e+00
nucleotide-binding domain (NBD) of the 105/110 kDa heat shock protein family; The 105/110 kDa heat shock proteins family includes the human proteins, HSPA4 (also known as 70-kDa heat shock protein 4; APG-2; HS24/P52; hsp70 RY; HSPH2), HSPA4L (also known as 70-kDa heat shock protein 4-like; APG-1; HSPH3; OSP94), and HSPH1 (also known as heat shock 105kDa/110kDa protein 1; HSP105; HSP105A; HSP105B; NY-CO-25), Saccharomyces cerevisiae Sse1p, Sse2p and a sea urchin sperm receptor. They all belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466838 [Multi-domain] Cd Length: 377 Bit Score: 601.09 E-value: 0e+00
nucleotide-binding domain (NBD) of Arabidopsis thaliana heat shock 70 kDa protein 14-16 and ...
1-392
0e+00
nucleotide-binding domain (NBD) of Arabidopsis thaliana heat shock 70 kDa protein 14-16 and similar proteins; The subgroup includes Arabidopsis thaliana Hsp70-14, also known as heat shock 70 kDa protein 14; heat shock protein 91), Hsp70-15 (also known as heat shock 70 kDa protein 15), and Hsp70-16 (also known as heat shock 70 kDa protein 16). In cooperation with other chaperones, they are key components that facilitate folding of de novo synthesized proteins, assist translocation of precursor proteins into organelles, and are responsible for degradation of damaged protein under stress conditions. Members in this subgroup belong to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466945 [Multi-domain] Cd Length: 389 Bit Score: 572.33 E-value: 0e+00
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae heat shock protein homolog Sse and ...
4-390
0e+00
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae heat shock protein homolog Sse and similar proteins; The subgroup includes two Saccharomyces cerevisiae heat shock protein homologs, Sse1 and Sse2. They may have calcium-dependent calmodulin-binding activities. Both Sse1 and Sse2 belong to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins.
Pssm-ID: 466944 [Multi-domain] Cd Length: 385 Bit Score: 565.85 E-value: 0e+00
nucleotide-binding domain (NBD) of the 70-kDa heat shock protein 1 (HSPA1)-like family; The ...
3-383
2.16e-128
nucleotide-binding domain (NBD) of the 70-kDa heat shock protein 1 (HSPA1)-like family; The HSPA1-like family includes human HSPA1A (70-kDa heat shock protein 1A, also known as HSP72; HSPA1; HSP70I; HSPA1B; HSP70-1; HSP70-1A), HSPA1B (70-kDa heat shock protein 1B, also known as HSPA1A; HSP70-2; HSP70-1B), and HSPA1L (70-kDa heat shock protein 1-like, also known as HSP70T; hum70t; HSP70-1L; HSP70-HOM), HSPA2 (70-kDa heat shock protein 2, also known as HSP70-2; HSP70-3), BiP (also known as HSP70 family protein 5 /HSPA5; 70-kDa heat shock protein 5; glucose-regulated protein 78/GRP78; immunoglobulin heavy chain-binding protein), HSPA6 (also known as heat shock 70kDa protein 6; HSP70B'), HSPA7 (heat shock 70kDa protein 7 , also known as HSP70B), HSPA8 (heat shock 70kDa protein 8, also known as Lipopolysaccharide-associated protein 1/LAP1; HSC70; HSP73; HSPA10), HSPA13 (also known as 70-kDa heat shock protein 13; STCH; microsomal stress-70 protein ATPase core; stress-70 protein chaperone microsome-associated 60 kDa protein), as well as Saccharmoyces cerevisiae Hsp70 chaperone Ssb1-2 and heat shock protein Ssa1-4. HSPA1A/1B, HSPA1L, HSPA2 and HSPA6-8 are molecular chaperones implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. They play pivotal roles in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. BiP plays a key role in protein folding and quality control in the endoplasmic reticulum lumen. It plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). HSPA13 has peptide-independent ATPase activity. All family members belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466878 [Multi-domain] Cd Length: 376 Bit Score: 389.18 E-value: 2.16e-128
nucleotide-binding domain (NBD) of 70-kDa heat shock protein 1 (HSPA1) and similar proteins; ...
4-383
4.15e-103
nucleotide-binding domain (NBD) of 70-kDa heat shock protein 1 (HSPA1) and similar proteins; This subfamily includes human HSPA1A (70-kDa heat shock protein 1A, also known as HSP72; HSPA1; HSP70I; HSPA1B; HSP70-1; HSP70-1A), HSPA1B (70-kDa heat shock protein 1B, also known as HSPA1A; HSP70-2; HSP70-1B), and HSPA1L (70-kDa heat shock protein 1-like, also known as HSP70T; hum70t; HSP70-1L; HSP70-HOM), HSPA2 (70-kDa heat shock protein 2, also known as HSP70-2; HSP70-3), HSPA6 (also known as heat shock 70kDa protein 6; HSP70B'), HSPA7 (heat shock 70kDa protein 7 , also known as HSP70B), and HSPA8 (heat shock 70kDa protein 8, also known as Lipopolysaccharide-associated protein 1/LAP1; HSC70; HSP73; HSPA10). They are molecular chaperones implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. They play pivotal roles in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The subfamily also includes Saccharomyces cerevisiae heat shock protein Ssa1-4, which may play a role in the transport of polypeptides both across the mitochondrial membranes and into the endoplasmic reticulum. This subfamily belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466831 [Multi-domain] Cd Length: 375 Bit Score: 323.43 E-value: 4.15e-103
nucleotide-binding domain (NBD) of binding-immunoglobulin protein (BiP) and similar proteins; ...
2-383
5.68e-102
nucleotide-binding domain (NBD) of binding-immunoglobulin protein (BiP) and similar proteins; This subfamily includes human BiP (also known as HSP70 family protein 5 /HSPA5; 70-kDa heat shock protein 5; glucose-regulated protein 78/GRP78; immunoglobulin heavy chain-binding protein), Sacchaormyces cerevisiae BiP (also known as Grp78p), Arabidopsis thaliana BiP1-3 (also known as luminal-binding protein 1-3) and related proteins. BiP plays a key role in protein folding and quality control in the endoplasmic reticulum lumen. It plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). BiP may function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. It appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. BiP may also play a role in apoptosis and cell proliferation. Plant BiP may be required for pollen development and pollen tube growth. This subfamily belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466837 [Multi-domain] Cd Length: 376 Bit Score: 320.31 E-value: 5.68e-102
nucleotide-binding domain (NBD) of hypoxia up-regulated protein 1 (HYOU1) and similar proteins; ...
2-381
1.26e-101
nucleotide-binding domain (NBD) of hypoxia up-regulated protein 1 (HYOU1) and similar proteins; This subgroup includes human HYOU1 (also known as human hypoxia up-regulated 1, 170 kDa glucose-regulated protein/GRP170; HSP12A; 150 kDa oxygen-regulated protein/ORP150; GRP-170; ORP-150) and Saccharomyces cerevisiae Lhs1p (also known as Cer1p, SsI1). Mammalian HYOU1 has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. It may play a role as a molecular chaperone and participate in protein folding. HYOU1 functions as a nucleotide exchange factor (NEF) for HSPA5 (also known as BiP, Grp78 or HspA5) and may also act as a HSPA5-independent chaperone. S. cerevisiae Lhs1p, does not have a detectable endogenous ATPase activity like canonical HSP70s, but functions as a NEF for Kar2p; it's interaction with Kar2p is stimulated by nucleotide-binding. In addition, Lhs1p has a nucleotide-independent holdase activity that prevents heat-induced aggregation of proteins in vitro. Members in this subgroup belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466828 [Multi-domain] Cd Length: 353 Bit Score: 318.67 E-value: 1.26e-101
nucleotide-binding domain (NBD) of Saccharmoyces cerevisiae Hsp70 chaperone Ssb and similar ...
4-383
1.11e-94
nucleotide-binding domain (NBD) of Saccharmoyces cerevisiae Hsp70 chaperone Ssb and similar proteins; Ssb is ribosome-bound, Hsp70-type chaperone that assists in the co-translational folding of newly synthesized proteins in the cytosol. It stimulates folding by interacting with nascent chains, binding to short, largely hydrophobic sequences exposed by unfolded proteins, thereby stabilizing longer, more slowly translated, and aggregation-prone nascent polypeptides and domains that cannot fold stably until fully synthesized. Ssb cooperates with a specific Hsp40/Hsp70 co-chaperone termed the ribosome-associated complex (RAC), which stimulates the ATPase activity of the ribosome-associated pool of Ssbs and switches it to the high affinity substrate binding state. Saccharmoyces cerevisiae Ssb are encoded by two genes, SSB1 and SSB2. Ssb1p is also known as cold-inducible protein YG101. Members in this subfamily belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466943 [Multi-domain] Cd Length: 375 Bit Score: 301.52 E-value: 1.11e-94
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein DnaK and similar ...
3-384
7.09e-83
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein DnaK and similar proteins; This subfamily includes Escherichia coli chaperone protein DnaK (also known as heat shock 70 kDa protein/HSP70), human mitochondrial heat shock 70 kDa protein HSPA9 (also known as mitochondrial stress-70 protein; mortalin; 75 kDa glucose-regulated protein/GRP-75; HSPA9B; MOT; peptide-binding protein 74/PBP74), Saccharomyces cerevisiae stress-seventy subfamily C proteins, Ssc1p (also called import motor subunit, mitochondrial; endonuclease SceI 75 kDa subunit; mtHSP70; ENS1; endonuclease SceI 75 kDa subunit) and Ssc3p (also called extracellular mutant protein 10/Ecm10), and Saccharomyces cerevisiae Stress-seventy subfamily Q protein 1/Ssq1p (also called Ssc2p; Ssh1p; mtHSP70 homolog). They all belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs); for Escherichia coli DnaK, these are the DnaJ and GrpE, respectively.
Pssm-ID: 466832 [Multi-domain] Cd Length: 373 Bit Score: 270.12 E-value: 7.09e-83
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 14 (HSPA14) and similar proteins; ...
2-383
5.99e-80
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 14 (HSPA14) and similar proteins; HSPA14, also called HSP70-like protein 1 (Hsp70L1), or heat shock protein HSP60, is a component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, HSPA14 binds to the nascent polypeptide chain, while DNAJC2 stimulates its ATPase activity. It belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis.
Pssm-ID: 466836 [Multi-domain] Cd Length: 377 Bit Score: 262.18 E-value: 5.99e-80
nucleotide-binding domain (NBD) of human mitochondrial heat shock 70 kDa protein 9 (HSPA9) and ...
3-383
1.43e-79
nucleotide-binding domain (NBD) of human mitochondrial heat shock 70 kDa protein 9 (HSPA9) and similar proteins; This subgroup includes human mitochondrial HSPA9 (also known as mitochondrial stress-70 protein; mortalin; 75 kDa glucose-regulated protein/GRP-75; HSPA9B; MOT; peptide-binding protein 74/PBP74). It acts as a chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. It interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. HSPA9 regulates erythropoiesis via stabilization of ISC assembly. It may play a role in the control of cell proliferation and cellular aging. Members in this subgroup belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs).
Pssm-ID: 466839 [Multi-domain] Cd Length: 377 Bit Score: 261.43 E-value: 1.43e-79
nucleotide-binding domain (NBD) of Escherichia coli chaperone proteins DnaK, HscA, HscC and ...
4-384
2.35e-74
nucleotide-binding domain (NBD) of Escherichia coli chaperone proteins DnaK, HscA, HscC and similar proteins; Escherichia coli DnaK, also called heat shock 70 kDa protein/HSP70, plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Moreover, DnaK participates actively in the response to hyperosmotic shock. Escherichia coli HscA, also called Hsc66, acts as a chaperone involved in the maturation of iron-sulfur cluster-containing proteins. It has a low intrinsic ATPase activity which is markedly stimulated by HscB. It is involved in the maturation of IscU. Escherichia coli HscC, also called Hsc62, or YbeW, may act as the chaperone. It has ATPase activity. It cannot be stimulated by DnaJ. The family also includes Saccharomyces cerevisiae stress-seventy subfamily C proteins, Ssc1p (also called import motor subunit, mitochondrial; endonuclease SceI 75 kDa subunit; mtHSP70; ENS1; endonuclease SceI 75 kDa subunit) and Ssc3p (also called extracellular mutant protein 10/Ecm10), and Saccharomyces cerevisiae Stress-seventy subfamily Q protein 1/Ssq1p (also called Ssc2p; Ssh1p; mtHSP70 homolog). They all belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs); for Escherichia coli DnaK, these are the DnaJ and GrpE, respectively.
Pssm-ID: 466879 [Multi-domain] Cd Length: 351 Bit Score: 246.33 E-value: 2.35e-74
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae mitochondrial heat shock protein ...
2-384
1.23e-73
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae mitochondrial heat shock protein Ssc1p and Ssc3p and similar proteins; This subgroup includes Saccharomyces cerevisiae Stress-Seventy subfamily C proteins, Ssc1p (also called import motor subunit, mitochondrial; endonuclease SceI 75 kDa subunit; mtHSP70; ENS1; endonuclease SceI 75 kDa subunit) and sc3p (also called extracellular mutant protein 10/Ecm10). Ssc1p is an essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. It constitutes the ATP-driven core of the motor and binds the precursor preprotein. It is required for the import of the processed frataxin homolog YFH1 into the mitochondrion. Ssc1p also acts as a non-catalytic component of endonuclease SceI (endo.SceI), which cleaves specifically at multiple sites on mitochondrial DNA and produces double-stranded breaks. Ssc1p confers broader sequence specificity, greater stability, and higher activity on the catalytic subunit. Ssc3p plays a role in facilitating the assembly of some protein complexes inside the mitochondria. It may initiate the events that lead to refolding of imported precursors in the matrix space.
Pssm-ID: 466840 [Multi-domain] Cd Length: 378 Bit Score: 245.43 E-value: 1.23e-73
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae ribosome-associated complex ...
3-383
1.97e-73
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae ribosome-associated complex subunit Ssz1 and similar proteins; Ssz1, also called DnaK-related protein Ssz1, heat shock protein 70 homolog Ssz1, or pleiotropic drug resistance protein 13 (PDR13), is a component of the ribosome-associated complex (RAC), a heterodimeric chaperone complex involved in regulation of accurate translation termination and in folding or maintaining nascent polypeptides in a folding-competent state. RAC stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones Ssb1/Ssb2 that bind to the nascent polypeptide chain. Ssz1 is required for Zuo1 to function efficiently as a J-protein for Ssb1/Ssb2. It is also involved in pleiotropic drug resistance by post-translational activation of transcription factor PDR1. Members in this subfamily belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis.
Pssm-ID: 466830 [Multi-domain] Cd Length: 349 Bit Score: 243.81 E-value: 1.97e-73
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein HscA and similar ...
3-384
7.72e-70
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein HscA and similar proteins; Escherichia coli HscA, also called Hsc66, acts as a chaperone involved in the maturation of iron-sulfur cluster-containing proteins. It has a low intrinsic ATPase activity which is markedly stimulated by HscB. It is involved in the maturation of IscU. Members in this subfamily belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). HscA's partner J-domain protein is HscB; it does not appear to require a NEF and has been shown to be induced by cold-shock. The HscA-HscB chaperone/co-chaperone pair is involved in [Fe-S] cluster assembly.
Pssm-ID: 466834 [Multi-domain] Cd Length: 367 Bit Score: 234.80 E-value: 7.72e-70
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein HscC and similar ...
4-382
1.89e-68
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein HscC and similar proteins; Escherichia coli HscC, also called Hsc62, or YbeW, may act as the chaperone. It has ATPase activity. It cannot be stimulated by DnaJ. Members in this subfamily belong to the heat shock protein 70 (Hsp70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, Hsp70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Two genes in the vicinity of the HscC gene code for potential cochaperones: J-domain containing proteins, DjlB/YbeS and DjlC/YbeV. HscC and its co-chaperone partners may play a role in the SOS DNA damage response. HscC does not appear to require a NEF.
Pssm-ID: 466833 [Multi-domain] Cd Length: 343 Bit Score: 230.21 E-value: 1.89e-68
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 13 (HSPA13) and similar proteins; ...
3-383
1.11e-66
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 13 (HSPA13) and similar proteins; HSPA13, also called 70-kDa heat shock protein 13, STCH, microsomal stress-70 protein ATPase core, or stress-70 protein chaperone microsome-associated 60 kDa protein, has peptide-independent ATPase activity. It belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). HSPA13 contains an NBD but lacks an SBD. It may function to regulate cell proliferation and survival and modulate the TRAIL-mediated cell death pathway. The HSPA13 gene is a candidate stomach cancer susceptibility gene; a mutation in the NBD coding region of HSPA13 has been identified in stomach cancer cells. The NBD of HSPA13 interacts with the ubiquitin-like proteins Chap1 and Chap2, implicating HSPA13 in regulating cell cycle and cell death events. HSPA13 is induced by the Ca2+ ionophore A23187.
Pssm-ID: 466835 [Multi-domain] Cd Length: 409 Bit Score: 227.61 E-value: 1.11e-66
nucleotide-binding domain (NBD) of the HSP70 family; HSP70 (70-kDa heat shock protein) family ...
116-378
1.06e-33
nucleotide-binding domain (NBD) of the HSP70 family; HSP70 (70-kDa heat shock protein) family chaperones assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some HSP70 family members are not chaperones but instead, function as NEFs to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle, some may function as both chaperones and NEFs. The HSP70 family belongs to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains.
Pssm-ID: 466811 [Multi-domain] Cd Length: 329 Bit Score: 132.23 E-value: 1.06e-33
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein YegD and similar ...
4-378
1.09e-14
nucleotide-binding domain (NBD) of Escherichia coli chaperone protein YegD and similar proteins; The family includes a group of uncharacterized proteins similar to Escherichia coli chaperone protein YegD that belongs to the heat shock protein 70 family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. YegD lacks the SBD. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some family members are not chaperones but instead, function as NEFs for their Hsp70 partners, other family members function as both chaperones and NEFs.
Pssm-ID: 466829 [Multi-domain] Cd Length: 409 Bit Score: 76.93 E-value: 1.09e-14
nucleotide-binding domain (NBD) of the PilM-like domain family; The PilM-like family includes ...
106-363
1.45e-07
nucleotide-binding domain (NBD) of the PilM-like domain family; The PilM-like family includes type IV pilus inner membrane component PilM, cell division protein FtsA, and ethanolamine utilization protein EutJ. PilM is an inner membrane component of the type IV (T4S) secretion system that plays a role in surface and host cell adhesion, colonization, biofilm maturation, virulence, and twitching, a form of surface-associated motility. FtsA is an essential cell division protein that assists in the assembly of the Z ring. It may serve as the principal membrane anchor for the Z ring. It is also required for the recruitment to the septal ring of the downstream cell division proteins FtsK, FtsQ, FtsL, FtsI and FtsN. EutJ may protect ethanolamine ammonia-lyase (EAL, eutB-eutC) from inhibition. It may also function in assembling the bacterial microcompartment and/or in refolding EAL, suggesting it may have chaperone activity. Members in PilM-like family belong to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily of phosphotransferases, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains.
Pssm-ID: 466854 [Multi-domain] Cd Length: 282 Bit Score: 53.84 E-value: 1.45e-07
nucleotide-binding domain (NBD) of the cell shape-determining proteins MreB, Mbl, MreBH and ...
116-377
3.54e-07
nucleotide-binding domain (NBD) of the cell shape-determining proteins MreB, Mbl, MreBH and similar proteins; MreB proteins are bacterial actin homologs that may play a role in cell shape determination by positioning the cell wall synthetic machinery. MreB has also been implicated in chromosome segregation; specifically, MreB is thought to bind to and segregate the replication origin of bacterial chromosomes. The family includes three MreB isoforms, MreB (also called actin-like MreB protein or rod shape-determining protein MreB), Mbl (also called actin-like Mbl protein or rod shape-determining protein Mbl) and MreBH (also called actin-like MreBH protein or rod shape-determining protein MreBH), in cell morphogenesis of Bacillus subtilis. All isoforms can support rod-shaped cell growth normal conditions. They form membrane-associated dynamic filaments that are essential for cell shape determination. They act by regulating cell wall synthesis and cell elongation, and thus cell shape. The feedback loops between cell geometry and their localizations may maintain elongated cell shape by targeting cell wall growth to regions of negative cell wall curvature. Filaments rotate around the cell circumference in concert with the cell wall synthesis enzymes. The process is driven by the cell wall synthesis machinery and does not depend on their polymerization. They organize peptidoglycan synthesis in the lateral cell wall. MreB, Mbl and MreBH can form a complex. The MreB-like family belongs to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains.
Pssm-ID: 466824 [Multi-domain] Cd Length: 317 Bit Score: 52.86 E-value: 3.54e-07
nucleotide-binding domain (NBD) of type IV pilus inner membrane component PilM and similar ...
101-361
1.24e-06
nucleotide-binding domain (NBD) of type IV pilus inner membrane component PilM and similar proteins; PilM is an inner membrane component of the type IV (T4S) secretion system that plays a role in surface and host cell adhesion, colonization, biofilm maturation, virulence, and twitching, a form of surface-associated motility. PilN/PilO heterodimers form the foundation of the inner-membrane PilM/PilN/PilO/PilP complex which plays an essential role in the assembly of a functional T4 pilus. In turn, PilM associates with PilN and facilitates PilM functionally relevant structural changes that differentially impacts PilM binding to PilB, PilT, and PilC.
Pssm-ID: 466899 [Multi-domain] Cd Length: 339 Bit Score: 51.51 E-value: 1.24e-06
nucleotide-binding domain (NBD) of heat shock 70 kDa proteins HSPA12A, HSPA12B and similar ...
141-360
4.53e-04
nucleotide-binding domain (NBD) of heat shock 70 kDa proteins HSPA12A, HSPA12B and similar proteins; The family includes heat shock 70 kDa proteins HSPA12A and HSPA12B. HSPA12A is an adapter protein for SORL1, but not SORT1. It delays SORL1 internalization and affects SORL1 subcellular localization. HSPA12B, predominantly expressed in endothelial cells, is required for angiogenesis, and may interact with known angiogenesis mediators. It may be important for host defense in microglia-mediated immune response. Both HSPA12A and HSPA12B belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A and HSPA12B.
Pssm-ID: 466827 [Multi-domain] Cd Length: 372 Bit Score: 43.42 E-value: 4.53e-04
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like ...
607-751
9.86e-03
Septation ring formation regulator, EzrA; During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. EzrA modulates the frequency and position of FtsZ ring formation. The structure contains 5 spectrin like alpha helical repeats.
Pssm-ID: 428797 [Multi-domain] Cd Length: 542 Bit Score: 39.45 E-value: 9.86e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options