folylpolyglutamate synthase (FPGS) catalyzes the addition of glutamate residues to folates, forming polyglutamate derivatives which is essential for the metabolism of folate
folylpolyglutamate synthase/dihydrofolate synthase; This model represents the FolC family of ...
96-495
7.75e-116
folylpolyglutamate synthase/dihydrofolate synthase; This model represents the FolC family of folate pathway proteins. Most examples are bifunctional, active as both folylpolyglutamate synthetase (EC 6.3.2.17) and dihydrofolate synthetase (EC 6.3.2.12). The two activities are similar - ATP + glutamate + dihydropteroate or tetrahydrofolyl-[Glu](n) = ADP + orthophosphate + dihydrofolate or tetrahydrofolyl-[Glu](n+1). A mutation study of the FolC gene of E. coli suggests that both activities belong to the same active site. Because some examples are monofunctional (and these cannot be separated phylogenetically), the model is treated as subfamily, not equivalog. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid]
Pssm-ID: 273659 [Multi-domain] Cd Length: 397 Bit Score: 349.27 E-value: 7.75e-116
Folylpolyglutamate synthase/Dihydropteroate synthase [Coenzyme transport and metabolism]; ...
96-566
4.70e-101
Folylpolyglutamate synthase/Dihydropteroate synthase [Coenzyme transport and metabolism]; Folylpolyglutamate synthase/Dihydropteroate synthase is part of the Pathway/BioSystem: Folate biosynthesis
Pssm-ID: 440054 [Multi-domain] Cd Length: 423 Bit Score: 312.42 E-value: 4.70e-101
Mur ligase family, glutamate ligase domain; This family contains a number of related ligase ...
356-437
3.48e-03
Mur ligase family, glutamate ligase domain; This family contains a number of related ligase enzymes which have EC numbers 6.3.2.*. This family includes: MurC, MurD, MurE, MurF, Mpl and FolC. MurC, MurD, Mure and MurF catalyze consecutive steps in the synthesis of peptidoglycan. Peptidoglycan consists of a sheet of two sugar derivatives, with one of these N-acetylmuramic acid attaching to a small pentapeptide. The pentapeptide is is made of L-alanine, D-glutamic acid, Meso-diaminopimelic acid and D-alanyl alanine. The peptide moiety is synthesized by successively adding these amino acids to UDP-N-acetylmuramic acid. MurC transfers the L-alanine, MurD transfers the D-glutamate, MurE transfers the diaminopimelic acid, and MurF transfers the D-alanyl alanine. This family also includes Folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate.
Pssm-ID: 460731 [Multi-domain] Cd Length: 87 Bit Score: 36.94 E-value: 3.48e-03
folylpolyglutamate synthase/dihydrofolate synthase; This model represents the FolC family of ...
96-495
7.75e-116
folylpolyglutamate synthase/dihydrofolate synthase; This model represents the FolC family of folate pathway proteins. Most examples are bifunctional, active as both folylpolyglutamate synthetase (EC 6.3.2.17) and dihydrofolate synthetase (EC 6.3.2.12). The two activities are similar - ATP + glutamate + dihydropteroate or tetrahydrofolyl-[Glu](n) = ADP + orthophosphate + dihydrofolate or tetrahydrofolyl-[Glu](n+1). A mutation study of the FolC gene of E. coli suggests that both activities belong to the same active site. Because some examples are monofunctional (and these cannot be separated phylogenetically), the model is treated as subfamily, not equivalog. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid]
Pssm-ID: 273659 [Multi-domain] Cd Length: 397 Bit Score: 349.27 E-value: 7.75e-116
Folylpolyglutamate synthase/Dihydropteroate synthase [Coenzyme transport and metabolism]; ...
96-566
4.70e-101
Folylpolyglutamate synthase/Dihydropteroate synthase [Coenzyme transport and metabolism]; Folylpolyglutamate synthase/Dihydropteroate synthase is part of the Pathway/BioSystem: Folate biosynthesis
Pssm-ID: 440054 [Multi-domain] Cd Length: 423 Bit Score: 312.42 E-value: 4.70e-101
UDP-N-acetylmuramyl tripeptide synthase [Cell wall/membrane/envelope biogenesis]; UDP-N-acetylmuramyl tripeptide synthase is part of the Pathway/BioSystem: Mureine biosynthesis
Pssm-ID: 440532 [Multi-domain] Cd Length: 459 Bit Score: 43.91 E-value: 2.17e-04
UDP-N-acetylmuramyl-tripeptide synthetase; Most members of this family are EC 6.3.2.13, ...
96-416
3.53e-04
UDP-N-acetylmuramyl-tripeptide synthetase; Most members of this family are EC 6.3.2.13, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase. An exception is Staphylococcus aureus, in which diaminopimelate is replaced by lysine in the peptidoglycan and MurE is EC 6.3.2.7. The Mycobacteria, part of the closest neighboring branch outside of the low-GC Gram-positive bacteria, use diaminopimelate. A close homolog, scoring just below the trusted cutoff, is found (with introns) in Arabidopsis thaliana. Its role is unknown. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan]
Pssm-ID: 273435 [Multi-domain] Cd Length: 464 Bit Score: 43.46 E-value: 3.53e-04
Mur ligase family, glutamate ligase domain; This family contains a number of related ligase ...
356-437
3.48e-03
Mur ligase family, glutamate ligase domain; This family contains a number of related ligase enzymes which have EC numbers 6.3.2.*. This family includes: MurC, MurD, MurE, MurF, Mpl and FolC. MurC, MurD, Mure and MurF catalyze consecutive steps in the synthesis of peptidoglycan. Peptidoglycan consists of a sheet of two sugar derivatives, with one of these N-acetylmuramic acid attaching to a small pentapeptide. The pentapeptide is is made of L-alanine, D-glutamic acid, Meso-diaminopimelic acid and D-alanyl alanine. The peptide moiety is synthesized by successively adding these amino acids to UDP-N-acetylmuramic acid. MurC transfers the L-alanine, MurD transfers the D-glutamate, MurE transfers the diaminopimelic acid, and MurF transfers the D-alanyl alanine. This family also includes Folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate.
Pssm-ID: 460731 [Multi-domain] Cd Length: 87 Bit Score: 36.94 E-value: 3.48e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options