rho guanine nucleotide exchange factor 1 isoform 3 [Homo sapiens]
RhoGEF family protein; PH domain-containing RhoGEF family protein( domain architecture ID 11639510)
RhoGEF (rho guanine nucleotide exchange factor) family protein similar to RhoGEF and PH (pleckstrin homology) domain regions of Homo sapiens Rho guanine nucleotide exchange factor 9 (ARHGEF9) that acts as guanine nucleotide exchange factor (GEF) for CDC42 and promotes formation of GPHN clusters| PH domain-containing RhoGEF family protein may function as a guanine nucleotide exchange factor; similar to Homo sapiens pleckstrin homology domain-containing family G member 4B and Danio rerio quattro
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
RGS super family | cl02565 | Regulator of G protein signaling (RGS) domain superfamily; The RGS domain is an essential part ... |
52-211 | 7.72e-80 | ||||
Regulator of G protein signaling (RGS) domain superfamily; The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. While inactive, G-alpha-subunits bind GDP, which is released and replaced by GTP upon agonist activation. GTP binding leads to dissociation of the alpha-subunit and the beta-gamma-dimer, allowing them to interact with effectors molecules and propagate signaling cascades associated with cellular growth, survival, migration, and invasion. Deactivation of the G-protein signaling controlled by the RGS domain accelerates GTPase activity of the alpha subunit by hydrolysis of GTP to GDP, which results in the reassociation of the alpha-subunit with the beta-gamma-dimer and thereby inhibition of downstream activity. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins are also involved in apoptosis and cell proliferation, as well as modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play important roles in neuronal signals modulation. Some RGS proteins are principal elements needed for proper vision. The actual alignment was detected with superfamily member cd08755: Pssm-ID: 470619 Cd Length: 193 Bit Score: 255.97 E-value: 7.72e-80
|
||||||||
PH_p115RhoGEF | cd14679 | Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, ... |
605-729 | 4.11e-70 | ||||
Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, GEF1 or LBCL2) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p115RhoGEF contains an N-terminal RGS (Regulator of G-protein signalling) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 275429 Cd Length: 125 Bit Score: 227.42 E-value: 4.11e-70
|
||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
387-571 | 8.77e-53 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. : Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 181.73 E-value: 8.77e-53
|
||||||||
PHA03169 super family | cl27451 | hypothetical protein; Provisional |
218-382 | 6.95e-04 | ||||
hypothetical protein; Provisional The actual alignment was detected with superfamily member PHA03169: Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 43.04 E-value: 6.95e-04
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
RGS_p115RhoGEF | cd08755 | Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange ... |
52-211 | 7.72e-80 | |||||
Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (GEF), p115 RhoGEF; The RGS (Regulator of G-protein Signaling) domain is an essential part of the p115RhoGEF protein, a member of the RhoGEF (Rho guanine nucleotide exchange factor) subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, cell cycle progression of cells, and gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes p115RhoGEF, LARG, PDZ-RhoGEF and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In addition to being a G-alpha13/12 effector, the p115RhoGEF protein also functions as a GTPase-activating protein (GAP) for G-alpha13. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Pssm-ID: 188709 Cd Length: 193 Bit Score: 255.97 E-value: 7.72e-80
|
|||||||||
PH_p115RhoGEF | cd14679 | Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, ... |
605-729 | 4.11e-70 | |||||
Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, GEF1 or LBCL2) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p115RhoGEF contains an N-terminal RGS (Regulator of G-protein signalling) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275429 Cd Length: 125 Bit Score: 227.42 E-value: 4.11e-70
|
|||||||||
RGS-like | pfam09128 | Regulator of G protein signalling-like domain; Members of this family adopt a structure ... |
42-199 | 4.29e-58 | |||||
Regulator of G protein signalling-like domain; Members of this family adopt a structure consisting of twelve helices that fold into a compact domain that contains the overall structural scaffold observed in other RGS proteins and three additional helical elements that pack closely to it. Helices 1-9 comprise the RGS (pfam00615) fold, in which helices 4-7 form a classic antiparallel bundle adjacent to the other helices. Like other RGS structures, helices 7 and 8 span the length of the folded domain and form essentially one continuous helix with a kink in the middle. Helices 10-12 form an apparently stable C-terminal extension of the structural domain, and although other RGS proteins lack this structure, these elements are intimately associated with the rest of the structural framework by hydrophobic interactions. Members of the family bind to active G-alpha proteins, promoting GTP hydrolysis by the alpha subunit of heterotrimeric G proteins, thereby inactivating the G protein and rapidly switching off G protein-coupled receptor signalling pathways. Pssm-ID: 462687 Cd Length: 191 Bit Score: 196.95 E-value: 4.29e-58
|
|||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
387-571 | 8.77e-53 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 181.73 E-value: 8.77e-53
|
|||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
384-570 | 4.20e-50 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 174.41 E-value: 4.20e-50
|
|||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
387-570 | 2.58e-45 | |||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 160.54 E-value: 2.58e-45
|
|||||||||
PH_16 | pfam17838 | PH domain; |
599-727 | 2.22e-37 | |||||
PH domain; Pssm-ID: 436083 Cd Length: 127 Bit Score: 136.38 E-value: 2.22e-37
|
|||||||||
ROM1 | COG5422 | RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ... |
355-624 | 4.09e-16 | |||||
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms]; Pssm-ID: 227709 [Multi-domain] Cd Length: 1175 Bit Score: 83.40 E-value: 4.09e-16
|
|||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
218-382 | 6.95e-04 | |||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 43.04 E-value: 6.95e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
RGS_p115RhoGEF | cd08755 | Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange ... |
52-211 | 7.72e-80 | |||||
Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (GEF), p115 RhoGEF; The RGS (Regulator of G-protein Signaling) domain is an essential part of the p115RhoGEF protein, a member of the RhoGEF (Rho guanine nucleotide exchange factor) subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, cell cycle progression of cells, and gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes p115RhoGEF, LARG, PDZ-RhoGEF and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In addition to being a G-alpha13/12 effector, the p115RhoGEF protein also functions as a GTPase-activating protein (GAP) for G-alpha13. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Pssm-ID: 188709 Cd Length: 193 Bit Score: 255.97 E-value: 7.72e-80
|
|||||||||
PH_p115RhoGEF | cd14679 | Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, ... |
605-729 | 4.11e-70 | |||||
Rho guanine nucleotide exchange factor Pleckstrin homology domain; p115RhoGEF (also called LSC, GEF1 or LBCL2) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p115RhoGEF contains an N-terminal RGS (Regulator of G-protein signalling) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275429 Cd Length: 125 Bit Score: 227.42 E-value: 4.11e-70
|
|||||||||
RGS-like | pfam09128 | Regulator of G protein signalling-like domain; Members of this family adopt a structure ... |
42-199 | 4.29e-58 | |||||
Regulator of G protein signalling-like domain; Members of this family adopt a structure consisting of twelve helices that fold into a compact domain that contains the overall structural scaffold observed in other RGS proteins and three additional helical elements that pack closely to it. Helices 1-9 comprise the RGS (pfam00615) fold, in which helices 4-7 form a classic antiparallel bundle adjacent to the other helices. Like other RGS structures, helices 7 and 8 span the length of the folded domain and form essentially one continuous helix with a kink in the middle. Helices 10-12 form an apparently stable C-terminal extension of the structural domain, and although other RGS proteins lack this structure, these elements are intimately associated with the rest of the structural framework by hydrophobic interactions. Members of the family bind to active G-alpha proteins, promoting GTP hydrolysis by the alpha subunit of heterotrimeric G proteins, thereby inactivating the G protein and rapidly switching off G protein-coupled receptor signalling pathways. Pssm-ID: 462687 Cd Length: 191 Bit Score: 196.95 E-value: 4.29e-58
|
|||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
387-571 | 8.77e-53 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 181.73 E-value: 8.77e-53
|
|||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
384-570 | 4.20e-50 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 174.41 E-value: 4.20e-50
|
|||||||||
PH_LARG | cd13390 | Leukemia-associated Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain; ... |
590-727 | 2.47e-46 | |||||
Leukemia-associated Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain; LARG (also called RhoGEF12) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. RhoGEFs activate Rho GTPases regulating cytoskeletal structure, gene transcription, and cell migration. LARG contains a N-terminal extension, followed by Dbl homology (DH)-PH domains which bind and catalyze the exchange of GDP for GTP on RhoA in addition to a RGS domain. The active site of RhoA adopts two distinct GDP-excluding conformations among the four unique complexes in the asymmetric unit. The LARG PH domain also contains a potential protein-docking site. LARG forms a homotetramer via its DH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275425 Cd Length: 138 Bit Score: 162.08 E-value: 2.47e-46
|
|||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
387-570 | 2.58e-45 | |||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 160.54 E-value: 2.58e-45
|
|||||||||
PH_PRG | cd13391 | PDZ Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain; PRG (also called ... |
588-724 | 3.13e-44 | |||||
PDZ Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain; PRG (also called RhoGEF11) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. RhoGEFs activate Rho GTPases regulating cytoskeletal structure, gene transcription, and cell migration. PRG contains an N-terminal PDZ domain, a regulators of G-protein signaling-like (RGSL) domain, a linker region, and a C-terminal Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. As is the case in p115-RhoGEF, it is thought that the PRG activated by relieving autoinhibition caused by the linker region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275426 Cd Length: 142 Bit Score: 156.34 E-value: 3.13e-44
|
|||||||||
PH_16 | pfam17838 | PH domain; |
599-727 | 2.22e-37 | |||||
PH domain; Pssm-ID: 436083 Cd Length: 127 Bit Score: 136.38 E-value: 2.22e-37
|
|||||||||
PH_RhoGEF | cd13329 | Rho guanine nucleotide exchange factor Pleckstrin homology domain; RhoGEFs belongs to ... |
615-726 | 3.23e-37 | |||||
Rho guanine nucleotide exchange factor Pleckstrin homology domain; RhoGEFs belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. The members here all contain Dbl homology (DH)-PH domains. In addition some members contain N-terminal C1 (Protein kinase C conserved region 1) domains, PDZ (also called DHR/Dlg homologous regions) domains, ANK (ankyrin) domains, and RGS (Regulator of G-protein signalling) domains or C-terminal ATP-synthase B subunit. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. RhoGEF2/Rho guanine nucleotide exchange factor 2, p114RhoGEF/p114 Rho guanine nucleotide exchange factor, p115RhoGEF, p190RhoGEF, PRG/PDZ Rho guanine nucleotide exchange factor, RhoGEF 11, RhoGEF 12, RhoGEF 18, AKAP13/A-kinase anchoring protein 13, and LARG/Leukemia-associated Rho guanine nucleotide exchange factor are included in this CD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275411 Cd Length: 109 Bit Score: 135.08 E-value: 3.23e-37
|
|||||||||
RGS_LARG | cd08754 | Regulator of G protein signaling (RGS) domain found in the leukemia-associated Rho guanine ... |
23-201 | 4.68e-34 | |||||
Regulator of G protein signaling (RGS) domain found in the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) protein (LARG); The RGS domain is an essential part of the leukemia-associated RhoGEF protein (LARG), a member of the RhoGEF (Rho guanine nucleotide exchange factor) subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, cell cycle progression of cells, and gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes p115RhoGEF, LARG, PDZ-RhoGEF, and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In addition to being a G-alpha13 effector, the LARG protein also functions as a GTPase-activating protein (GAP) for G-alpha13. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Pssm-ID: 188708 Cd Length: 222 Bit Score: 130.12 E-value: 4.68e-34
|
|||||||||
RGS_RhoGEF-like | cd08736 | Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange ... |
53-139 | 1.35e-23 | |||||
Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein; The RGS domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein subfamily of the RGS domain containing protein family, which is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RhoGEFs link signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RGS domain of the RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. The RGS-GEFs subfamily includes the leukemia-associated RhoGEF (LARG), p115RhoGEF, and PDZ-RhoGEF. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Pssm-ID: 188690 Cd Length: 120 Bit Score: 96.55 E-value: 1.35e-23
|
|||||||||
ROM1 | COG5422 | RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ... |
355-624 | 4.09e-16 | |||||
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms]; Pssm-ID: 227709 [Multi-domain] Cd Length: 1175 Bit Score: 83.40 E-value: 4.09e-16
|
|||||||||
RGS_PDZRhoGEF | cd08753 | Regulator of G protein signaling (RGS) domain found in the PDZ-Rho guanine nucleotide exchange ... |
23-132 | 1.17e-06 | |||||
Regulator of G protein signaling (RGS) domain found in the PDZ-Rho guanine nucleotide exchange factor (RhoGEF) protein; The RGS domain is an essential part of the PDZ-RhoGEF (PDZ:Postsynaptic density 95, Disk large, Zona occludens-1; RhoGEF: Rho guanine nucleotide exchange factor; alias PRG) protein, a member of RhoGEFs subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, and cell cycle progression, as well as gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. RhoGEFs subfamily includes leukemia-associated RhoGEF protein (LARG), p115RhoGEF, PDZ-RhoGEF and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In contrast to p115RhoGEF and LARG, PDZ-RhoGEF cannot serve as a GTPase-activating protein (GAP), due to the mutation of sites in the RGS domain region that are crucial for GAP activity. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Pssm-ID: 188707 Cd Length: 145 Bit Score: 49.10 E-value: 1.17e-06
|
|||||||||
PH_ARHGEF18 | cd15794 | Rho guanine nucleotide exchange factor 18 Pleckstrin homology (PH) domain; ARHGEF18, also ... |
612-722 | 3.67e-04 | |||||
Rho guanine nucleotide exchange factor 18 Pleckstrin homology (PH) domain; ARHGEF18, also called p114RhoGEF, is a key regulator of RhoA-Rock2 signaling that is crucial for maintenance of polarity in the vertebrate retinal epithelium, and consequently is essential for cellular differentiation, morphology and eventually organ function. ARHGEF18 contains Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275437 Cd Length: 119 Bit Score: 41.04 E-value: 3.67e-04
|
|||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
218-382 | 6.95e-04 | |||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 43.04 E-value: 6.95e-04
|
|||||||||
PH_AKAP13 | cd13392 | A-kinase anchoring protein 13 Pleckstrin homology (PH) domain; The Rho-specific GEF activity ... |
615-725 | 1.35e-03 | |||||
A-kinase anchoring protein 13 Pleckstrin homology (PH) domain; The Rho-specific GEF activity of AKAP13 (also called Brx-1, AKAP-Lbc, and proto-Lbc) mediates signaling downstream of G-protein coupled receptors and Toll-like receptor 2. It plays a role in cell growth, cell development and actin fiber formation. Protein kinase A (PKA) binds and phosphorylates AKAP13, regulating its Rho-GEF activity. Alternative splicing of this gene in humans has at least 3 transcript variants encoding different isoforms (i.e. proto-/onco-Lymphoid blast crisis, Lbc and breast cancer nuclear receptor-binding auxiliary protein, Brx) containing a dbl oncogene homology (DH) domain and PH domain which are required for full transforming activity. The DH domain is associated with guanine nucleotide exchange activation while the PH domain has multiple functions including determine protein sub-cellular localisation via phosphoinositide interactions, while others bind protein partners. Other ligands include protein kinase C which is bound by the PH domain of AKAP13, serving to activate protein kinase D and mobilize a cardiac hypertrophy signaling pathway. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275427 Cd Length: 103 Bit Score: 39.12 E-value: 1.35e-03
|
|||||||||
PH_p190RhoGEF | cd14680 | Rho guanine nucleotide exchange factor Pleckstrin homology domain; p190RhoGEF (also called ... |
615-724 | 1.46e-03 | |||||
Rho guanine nucleotide exchange factor Pleckstrin homology domain; p190RhoGEF (also called RIP2 or ARHGEF28) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p190RhoGEF contains an N-terminal C1 (Protein kinase C conserved region 1) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275430 Cd Length: 101 Bit Score: 38.83 E-value: 1.46e-03
|
|||||||||
PH_ARHGEF2 | cd13393 | Rho guanine nucleotide exchange factor 2 Pleckstrin homology (PH) domain; ARHGEF2, also called ... |
612-728 | 3.37e-03 | |||||
Rho guanine nucleotide exchange factor 2 Pleckstrin homology (PH) domain; ARHGEF2, also called GEF-H1, acts as guanine nucleotide exchange factor (GEF) for RhoA GTPases. It is thought to play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. ARHGEF2 contains a C1 domain followed by Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275428 Cd Length: 116 Bit Score: 38.32 E-value: 3.37e-03
|
|||||||||
Blast search parameters | ||||
|