P-loop containing nucleoside triphosphate hydrolases superfamily protein [Arabidopsis thaliana]
YqeH domain-containing protein( domain architecture ID 10111420)
YqeH domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
145-348 | 2.46e-68 | ||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. : Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 219.06 E-value: 2.46e-68
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
145-348 | 2.46e-68 | ||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 219.06 E-value: 2.46e-68
|
||||||||
RbgA | COG1161 | Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; |
154-348 | 3.20e-22 | ||||
Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440775 [Multi-domain] Cd Length: 279 Bit Score: 96.72 E-value: 3.20e-22
|
||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
281-348 | 2.50e-09 | ||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 54.93 E-value: 2.50e-09
|
||||||||
PRK01889 | PRK01889 | GTPase RsgA; Reviewed |
199-300 | 1.19e-03 | ||||
GTPase RsgA; Reviewed Pssm-ID: 234988 [Multi-domain] Cd Length: 356 Bit Score: 41.46 E-value: 1.19e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
145-348 | 2.46e-68 | ||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 219.06 E-value: 2.46e-68
|
||||||||
RbgA | COG1161 | Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; |
154-348 | 3.20e-22 | ||||
Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440775 [Multi-domain] Cd Length: 279 Bit Score: 96.72 E-value: 3.20e-22
|
||||||||
YlqF_related_GTPase | cd01849 | Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, ... |
191-348 | 1.58e-13 | ||||
Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. Pssm-ID: 206746 [Multi-domain] Cd Length: 146 Bit Score: 68.18 E-value: 1.58e-13
|
||||||||
YlqF | cd01856 | Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs ... |
176-348 | 2.10e-10 | ||||
Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. The YlqF subfamily is represented in all eukaryotes as well as a phylogenetically diverse array of bacteria (including gram-positive bacteria, proteobacteria, Synechocystis, Borrelia, and Thermotoga). Pssm-ID: 206749 [Multi-domain] Cd Length: 171 Bit Score: 59.85 E-value: 2.10e-10
|
||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
281-348 | 2.50e-09 | ||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 54.93 E-value: 2.50e-09
|
||||||||
Era_like | cd00880 | E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ... |
284-349 | 1.25e-06 | ||||
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Pssm-ID: 206646 [Multi-domain] Cd Length: 161 Bit Score: 48.40 E-value: 1.25e-06
|
||||||||
Ras_like_GTPase | cd00882 | Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ... |
284-347 | 1.67e-06 | ||||
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. Pssm-ID: 206648 [Multi-domain] Cd Length: 161 Bit Score: 48.22 E-value: 1.67e-06
|
||||||||
RsgA_GTPase | pfam03193 | RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are ... |
190-300 | 4.70e-06 | ||||
RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are broadly conserved in bacteria and are indispensable for growth. The GTPase domain of RsgA is very similar to several P-loop GTPases, but differs in having a circular permutation of the GTPase structure described by a G4-G1-G3 pattern. Pssm-ID: 427191 [Multi-domain] Cd Length: 174 Bit Score: 47.15 E-value: 4.70e-06
|
||||||||
MJ1464 | cd01859 | An uncharacterized, circularly permuted subfamily of the Ras GTPases; This family represents ... |
191-348 | 8.52e-06 | ||||
An uncharacterized, circularly permuted subfamily of the Ras GTPases; This family represents archaeal GTPase typified by the protein MJ1464 from Methanococcus jannaschii. The members of this family show a circular permutation of the GTPase signature motifs so that C-terminal strands 5, 6, and 7 (strands 6 contain the NKxD motif) are relocated to the N terminus. Pssm-ID: 206752 [Multi-domain] Cd Length: 157 Bit Score: 46.16 E-value: 8.52e-06
|
||||||||
EngA2 | cd01895 | EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second ... |
282-348 | 4.97e-05 | ||||
EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206682 [Multi-domain] Cd Length: 174 Bit Score: 43.96 E-value: 4.97e-05
|
||||||||
RsgA | COG1162 | Ribosome biogenesis GTPase RsgA [Translation, ribosomal structure and biogenesis]; |
200-300 | 6.89e-05 | ||||
Ribosome biogenesis GTPase RsgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440776 [Multi-domain] Cd Length: 300 Bit Score: 45.10 E-value: 6.89e-05
|
||||||||
YjeQ_EngC | cd01854 | Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; ... |
200-300 | 2.01e-04 | ||||
Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain. Pssm-ID: 206747 [Multi-domain] Cd Length: 211 Bit Score: 42.77 E-value: 2.01e-04
|
||||||||
YihA_EngB | cd01876 | YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli ... |
284-347 | 2.48e-04 | ||||
YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. Pssm-ID: 206665 [Multi-domain] Cd Length: 170 Bit Score: 42.11 E-value: 2.48e-04
|
||||||||
PRK01889 | PRK01889 | GTPase RsgA; Reviewed |
199-300 | 1.19e-03 | ||||
GTPase RsgA; Reviewed Pssm-ID: 234988 [Multi-domain] Cd Length: 356 Bit Score: 41.46 E-value: 1.19e-03
|
||||||||
Toc34_like | cd01853 | Translocon at the Outer-envelope membrane of Chloroplasts 34-like (Toc34-like); The Toc34-like ... |
270-354 | 1.69e-03 | ||||
Translocon at the Outer-envelope membrane of Chloroplasts 34-like (Toc34-like); The Toc34-like (Translocon at the Outer-envelope membrane of Chloroplasts) family contains several Toc proteins, including Toc34, Toc33, Toc120, Toc159, Toc86, Toc125, and Toc90. The Toc complex at the outer envelope membrane of chloroplasts is a molecular machine of ~500 kDa that contains a single Toc159 protein, four Toc75 molecules, and four or five copies of Toc34. Toc64 and Toc12 are associated with the translocon, but do not appear to be part of the core complex. The Toc translocon initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. Toc34 and Toc159 are both GTPases, while Toc75 is a beta-barrel integral membrane protein. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon. Pssm-ID: 206652 Cd Length: 248 Bit Score: 40.38 E-value: 1.69e-03
|
||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
270-348 | 1.89e-03 | ||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 40.78 E-value: 1.89e-03
|
||||||||
trmE | cd04164 | trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ... |
277-327 | 2.53e-03 | ||||
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. Pssm-ID: 206727 [Multi-domain] Cd Length: 159 Bit Score: 38.63 E-value: 2.53e-03
|
||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
284-353 | 6.02e-03 | ||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 37.83 E-value: 6.02e-03
|
||||||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
284-353 | 7.07e-03 | ||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 38.82 E-value: 7.07e-03
|
||||||||
Gem1 | COG1100 | GTPase SAR1 family domain [General function prediction only]; |
176-276 | 8.89e-03 | ||||
GTPase SAR1 family domain [General function prediction only]; Pssm-ID: 440717 [Multi-domain] Cd Length: 177 Bit Score: 37.65 E-value: 8.89e-03
|
||||||||
Blast search parameters | ||||
|