YggS family pyridoxal phosphate enzyme is a pyridoxal 5-phosphate (PLP)-dependent enzyme; similar to human pyridoxal phosphate homeostasis protein, which may be involved in intracellular homeostatic regulation of pyridoxal 5'-phosphate (PLP), the active form of vitamin B6
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, ...
27-248
8.15e-129
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Eukaryotic YBL036c-like proteins; This subfamily contains mostly uncharacterized eukaryotic proteins with similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity. Some members of this subfamily are also referred to as PROSC (Proline synthetase co-transcribed bacterial homolog).
:
Pssm-ID: 143496 Cd Length: 227 Bit Score: 363.83 E-value: 8.15e-129
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, ...
27-248
8.15e-129
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Eukaryotic YBL036c-like proteins; This subfamily contains mostly uncharacterized eukaryotic proteins with similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity. Some members of this subfamily are also referred to as PROSC (Proline synthetase co-transcribed bacterial homolog).
Pssm-ID: 143496 Cd Length: 227 Bit Score: 363.83 E-value: 8.15e-129
pyridoxal phosphate enzyme, YggS family; Members of this protein family include YggS from ...
22-250
2.28e-59
pyridoxal phosphate enzyme, YggS family; Members of this protein family include YggS from Escherichia coli and YBL036C, an uncharacterized pyridoxal protein of Saccharomyces cerevisiae. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 129155 [Multi-domain] Cd Length: 229 Bit Score: 187.74 E-value: 2.28e-59
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, ...
27-248
8.15e-129
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Eukaryotic YBL036c-like proteins; This subfamily contains mostly uncharacterized eukaryotic proteins with similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity. Some members of this subfamily are also referred to as PROSC (Proline synthetase co-transcribed bacterial homolog).
Pssm-ID: 143496 Cd Length: 227 Bit Score: 363.83 E-value: 8.15e-129
Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, YBL036c-like proteins; This family ...
27-248
2.34e-91
Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, YBL036c-like proteins; This family contains mostly uncharacterized proteins, widely distributed among eukaryotes, bacteria and archaea, that bear similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity.
Pssm-ID: 143483 Cd Length: 222 Bit Score: 268.57 E-value: 2.34e-91
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, ...
27-249
6.74e-73
Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Yggs-like proteins; This subfamily contains mainly uncharacterized proteobacterial proteins with similarity to the hypothetical Escherichia coli protein YggS, a homolog of yeast YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. Like yeast YBL036c, Yggs is a single domain monomeric protein with a typical TIM-barrel fold. Its structure, which shows a covalently-bound PLP cofactor, is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. YggS has not been characterized extensively and its biological function is still unkonwn.
Pssm-ID: 143497 Cd Length: 224 Bit Score: 222.07 E-value: 6.74e-73
pyridoxal phosphate enzyme, YggS family; Members of this protein family include YggS from ...
22-250
2.28e-59
pyridoxal phosphate enzyme, YggS family; Members of this protein family include YggS from Escherichia coli and YBL036C, an uncharacterized pyridoxal protein of Saccharomyces cerevisiae. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 129155 [Multi-domain] Cd Length: 229 Bit Score: 187.74 E-value: 2.28e-59
Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes; The fold type III PLP-dependent enzyme ...
32-243
6.44e-18
Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes; The fold type III PLP-dependent enzyme family is predominantly composed of two-domain proteins with similarity to bacterial alanine racemases (AR) including eukaryotic ornithine decarboxylases (ODC), prokaryotic diaminopimelate decarboxylases (DapDC), biosynthetic arginine decarboxylases (ADC), carboxynorspermidine decarboxylases (CANSDC), and similar proteins. AR-like proteins contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. These proteins play important roles in the biosynthesis of amino acids and polyamine. The family also includes the single-domain YBL036c-like proteins, which contain a single PLP-binding TIM-barrel domain without any N- or C-terminal extensions. Due to the lack of a second domain, these proteins may possess only limited D- to L-alanine racemase activity or non-specific racemase activity.
Pssm-ID: 143484 [Multi-domain] Cd Length: 211 Bit Score: 79.29 E-value: 6.44e-18
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options