NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|20357578|ref|NP_620311|]
View 

APOBEC1 complementation factor isoform 3 [Homo sapiens]

Protein Classification

A1CF/RBM47 family protein( domain architecture ID 11492981)

A1CF/RBM47 family protein similar to Homo sapiens APOBEC1 complementation factor, an essential component of the apolipoprotein B mRNA editing enzyme complex which is responsible for the postranscriptional editing of a CAA codon for Gln to a UAA codon for stop in APOB mRNA

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
29-594 0e+00

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


:

Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 928.64  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    29 ALQSIILQT--LLEKENGQRKYGGPPPGWDAAPPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGY 106
Cdd:TIGR01648  22 ALKALLERTgyTLVQENGQRKYGGPPPGWSGVQPGRGCEVFVGKIPRDLYEDELVPLFEKAGPIYELRLMMDFSGQNRGY 101
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   107 AFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCASVDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKN 186
Cdd:TIGR01648 102 AFVTFCGKEEAKEAVKLLNNYEIRPGRLLGVCISVDNCRLFVGGIPKNKKREEILEEFSKVTEGVVDVIVYHSAADKKKN 181
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   187 RGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVDWAEPEVEVDEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIKPGA 266
Cdd:TIGR01648 182 RGFAFVEYESHRAAAMARRKLMPGRIQLWGHVIAVDWAEPEEEVDEDVMAKVKILYVRNLMTTTTEEIIEKSFSEFKPGK 261
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   267 VERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPVDKDSYVRYTRGTGGRGTMLQGEYTySLGQVYDPT 346
Cdd:TIGR01648 262 VERVKKIRDYAFVHFEDREDAVKAMDELNGKELEGSEIEVTLAKPVDKKSYVRYTRGTGGRGKERQAARQ-SLGQVYDPA 340
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   347 TTYLGAPVFYAPQTYAaiPSLHFPATKGHLSNRAIIRAPSvrGAAGVRGLGGRGYLAYTGLGRGYQVKGDKREDKLYDIL 426
Cdd:TIGR01648 341 SRSLAYEDYYYHPPYA--PSLHFPRMPGPIRGRGRGGAPS--RAAGGRGYPPYGYEAYYGDYYGYHDYRGKYEDKYYGYD 416
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   427 PGMELTPMNPVTLKPQGIKLAPQILEEICQKNNWGQPvyqlhsAIGQDQRQLFLYKITIPALASQNPAIHPFTPPKLSAF 506
Cdd:TIGR01648 417 PGMELTPMNPVRGKPGGRGGRPAIPPPRGRKNGAPPP------AIGQDGRQLFLYKITIPAGYSQRPAPHPLGPPRGSAF 490
                         490       500       510       520       530       540       550       560
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   507 VDEAKTYAAEYTLQTLGIPTDGGDGTMATAAAAATAFPGYAVPNATAPVS-AAQLKQAVTLGQDLAAYTTYEVYPTfAVT 585
Cdd:TIGR01648 491 VRGARGGPAQYQQRGRGSRTSRGNGRGGTAGGKRKAFDGYAQPDATARQTnNQQNWGAQPIGGDYAGYYGYEVYNN-AVT 569

                  ....*....
gi 20357578   586 ARGDGYGTF 594
Cdd:TIGR01648 570 DNQDFYQTY 578
 
Name Accession Description Interval E-value
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
29-594 0e+00

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 928.64  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    29 ALQSIILQT--LLEKENGQRKYGGPPPGWDAAPPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGY 106
Cdd:TIGR01648  22 ALKALLERTgyTLVQENGQRKYGGPPPGWSGVQPGRGCEVFVGKIPRDLYEDELVPLFEKAGPIYELRLMMDFSGQNRGY 101
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   107 AFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCASVDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKN 186
Cdd:TIGR01648 102 AFVTFCGKEEAKEAVKLLNNYEIRPGRLLGVCISVDNCRLFVGGIPKNKKREEILEEFSKVTEGVVDVIVYHSAADKKKN 181
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   187 RGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVDWAEPEVEVDEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIKPGA 266
Cdd:TIGR01648 182 RGFAFVEYESHRAAAMARRKLMPGRIQLWGHVIAVDWAEPEEEVDEDVMAKVKILYVRNLMTTTTEEIIEKSFSEFKPGK 261
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   267 VERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPVDKDSYVRYTRGTGGRGTMLQGEYTySLGQVYDPT 346
Cdd:TIGR01648 262 VERVKKIRDYAFVHFEDREDAVKAMDELNGKELEGSEIEVTLAKPVDKKSYVRYTRGTGGRGKERQAARQ-SLGQVYDPA 340
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   347 TTYLGAPVFYAPQTYAaiPSLHFPATKGHLSNRAIIRAPSvrGAAGVRGLGGRGYLAYTGLGRGYQVKGDKREDKLYDIL 426
Cdd:TIGR01648 341 SRSLAYEDYYYHPPYA--PSLHFPRMPGPIRGRGRGGAPS--RAAGGRGYPPYGYEAYYGDYYGYHDYRGKYEDKYYGYD 416
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   427 PGMELTPMNPVTLKPQGIKLAPQILEEICQKNNWGQPvyqlhsAIGQDQRQLFLYKITIPALASQNPAIHPFTPPKLSAF 506
Cdd:TIGR01648 417 PGMELTPMNPVRGKPGGRGGRPAIPPPRGRKNGAPPP------AIGQDGRQLFLYKITIPAGYSQRPAPHPLGPPRGSAF 490
                         490       500       510       520       530       540       550       560
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   507 VDEAKTYAAEYTLQTLGIPTDGGDGTMATAAAAATAFPGYAVPNATAPVS-AAQLKQAVTLGQDLAAYTTYEVYPTfAVT 585
Cdd:TIGR01648 491 VRGARGGPAQYQQRGRGSRTSRGNGRGGTAGGKRKAFDGYAQPDATARQTnNQQNWGAQPIGGDYAGYYGYEVYNN-AVT 569

                  ....*....
gi 20357578   586 ARGDGYGTF 594
Cdd:TIGR01648 570 DNQDFYQTY 578
RRM2_ACF cd12490
RNA recognition motif 2 (RRM2) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
141-229 1.40e-57

RNA recognition motif 2 (RRM2) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM2 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409914 [Multi-domain]  Cd Length: 89  Bit Score: 187.95  E-value: 1.40e-57
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 141 VDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIA 220
Cdd:cd12490   1 VDNCRLFVGGIPKTKKREEILAEMKKVTDGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHPIA 80

                ....*....
gi 20357578 221 VDWAEPEVE 229
Cdd:cd12490  81 VDWAEPEVE 89
DND1_DSRM pfam14709
double strand RNA binding domain from DEAD END PROTEIN 1; A C-terminal domain in human dead ...
447-523 3.76e-25

double strand RNA binding domain from DEAD END PROTEIN 1; A C-terminal domain in human dead end protein 1 (DND1_HUMAN) homologous to double strand RNA binding domains (PF00035, PF00333)


Pssm-ID: 405408  Cd Length: 80  Bit Score: 98.95  E-value: 3.76e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578   447 APQILEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITIPALASQNP-AIHPFTPPKLSAFVDEAKTYAAEYTLQTLG 523
Cdd:pfam14709   3 AVSHLEELCQKNKWGSPVYELHSTAGPDGKQLFTYKVVIPGIETPFPgVIWIFMPGKLCSTKEEAKEAAAEQVLEALG 80
RRM smart00360
RNA recognition motif;
66-134 1.87e-17

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 76.86  E-value: 1.87e-17
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578     66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
66-137 1.33e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 69.36  E-value: 1.33e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:COG0724   4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDrETGRSRGFGFVEMPDDEEAQAAIEALNGAEL-MGRTLKV 75
 
Name Accession Description Interval E-value
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
29-594 0e+00

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 928.64  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    29 ALQSIILQT--LLEKENGQRKYGGPPPGWDAAPPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGY 106
Cdd:TIGR01648  22 ALKALLERTgyTLVQENGQRKYGGPPPGWSGVQPGRGCEVFVGKIPRDLYEDELVPLFEKAGPIYELRLMMDFSGQNRGY 101
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   107 AFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCASVDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKN 186
Cdd:TIGR01648 102 AFVTFCGKEEAKEAVKLLNNYEIRPGRLLGVCISVDNCRLFVGGIPKNKKREEILEEFSKVTEGVVDVIVYHSAADKKKN 181
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   187 RGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVDWAEPEVEVDEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIKPGA 266
Cdd:TIGR01648 182 RGFAFVEYESHRAAAMARRKLMPGRIQLWGHVIAVDWAEPEEEVDEDVMAKVKILYVRNLMTTTTEEIIEKSFSEFKPGK 261
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   267 VERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPVDKDSYVRYTRGTGGRGTMLQGEYTySLGQVYDPT 346
Cdd:TIGR01648 262 VERVKKIRDYAFVHFEDREDAVKAMDELNGKELEGSEIEVTLAKPVDKKSYVRYTRGTGGRGKERQAARQ-SLGQVYDPA 340
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   347 TTYLGAPVFYAPQTYAaiPSLHFPATKGHLSNRAIIRAPSvrGAAGVRGLGGRGYLAYTGLGRGYQVKGDKREDKLYDIL 426
Cdd:TIGR01648 341 SRSLAYEDYYYHPPYA--PSLHFPRMPGPIRGRGRGGAPS--RAAGGRGYPPYGYEAYYGDYYGYHDYRGKYEDKYYGYD 416
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   427 PGMELTPMNPVTLKPQGIKLAPQILEEICQKNNWGQPvyqlhsAIGQDQRQLFLYKITIPALASQNPAIHPFTPPKLSAF 506
Cdd:TIGR01648 417 PGMELTPMNPVRGKPGGRGGRPAIPPPRGRKNGAPPP------AIGQDGRQLFLYKITIPAGYSQRPAPHPLGPPRGSAF 490
                         490       500       510       520       530       540       550       560
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   507 VDEAKTYAAEYTLQTLGIPTDGGDGTMATAAAAATAFPGYAVPNATAPVS-AAQLKQAVTLGQDLAAYTTYEVYPTfAVT 585
Cdd:TIGR01648 491 VRGARGGPAQYQQRGRGSRTSRGNGRGGTAGGKRKAFDGYAQPDATARQTnNQQNWGAQPIGGDYAGYYGYEVYNN-AVT 569

                  ....*....
gi 20357578   586 ARGDGYGTF 594
Cdd:TIGR01648 570 DNQDFYQTY 578
RRM2_ACF cd12490
RNA recognition motif 2 (RRM2) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
141-229 1.40e-57

RNA recognition motif 2 (RRM2) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM2 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409914 [Multi-domain]  Cd Length: 89  Bit Score: 187.95  E-value: 1.40e-57
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 141 VDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIA 220
Cdd:cd12490   1 VDNCRLFVGGIPKTKKREEILAEMKKVTDGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHPIA 80

                ....*....
gi 20357578 221 VDWAEPEVE 229
Cdd:cd12490  81 VDWAEPEVE 89
RRM3_ACF cd12498
RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
231-313 5.28e-54

RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409921 [Multi-domain]  Cd Length: 83  Bit Score: 178.19  E-value: 5.28e-54
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 231 DEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12498   1 DEDTMSSVKILYVRNLMLSTTEETIEKEFSNIKPGAVERVKKIRDYAFVHFYNREDAVNAMNALNGKVIDGSPIEVTLAK 80

                ...
gi 20357578 311 PVD 313
Cdd:cd12498  81 PVD 83
RRM2_hnRNPR_like cd12250
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
143-224 7.81e-54

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM2 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains); DND1 harbors only two RRMs.


Pssm-ID: 409696 [Multi-domain]  Cd Length: 82  Bit Score: 177.48  E-value: 7.81e-54
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 143 NCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVD 222
Cdd:cd12250   1 NNRLFVGGIPKTKTKEEILEEFSKVTEGVVDVIVYPSPDDKKKNRGFAFLEYESHKAAAIARRKLTPGRILLWGHDVAVD 80

                ..
gi 20357578 223 WA 224
Cdd:cd12250  81 WA 82
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
63-140 1.34e-53

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 176.70  E-value: 1.34e-53
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12486   1 GCEIFIGKLPRDLFEDELVPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKQEARNAIKQLNNYEIRNGRLLGVCAS 78
RRM2_RBM46 cd12492
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 46 (RBM46); This ...
142-226 1.93e-53

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM2 of RBM46, also termed cancer/testis antigen 68 (CT68). It is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240936 [Multi-domain]  Cd Length: 85  Bit Score: 176.74  E-value: 1.93e-53
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 142 DNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAV 221
Cdd:cd12492   1 DNCRLFIGAIPKEKKKEEILEEMKKVTEGVVDVIVYPSATDKTKNRGFAFVEYESHRAAAMARRKLIPGTFQLWGHTIQV 80

                ....*
gi 20357578 222 DWAEP 226
Cdd:cd12492  81 DWADP 85
RRM2_RBM47 cd12491
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 47 (RBM47); This ...
143-235 1.45e-52

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM2 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409915 [Multi-domain]  Cd Length: 95  Bit Score: 174.88  E-value: 1.45e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 143 NCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVD 222
Cdd:cd12491   3 NCRLFIGGIPKMKKREEILEEISKVTEGVLDVIVYASAADKMKNRGFAFVEYESHRAAAMARRKLMPGRIQLWGHQIAVD 82
                        90
                ....*....|...
gi 20357578 223 WAEPEVEVDEDTM 235
Cdd:cd12491  83 WAEPEIDVDEDVM 95
DSRM_A1CF cd19900
double-stranded RNA binding motif of APOBEC1 complementation factor (A1CF) and similar ...
445-525 2.83e-52

double-stranded RNA binding motif of APOBEC1 complementation factor (A1CF) and similar proteins; A1CF (also known as APOBEC1-stimulating protein) is an essential component of the apolipoprotein B mRNA editing enzyme complex which is responsible for the posttranscriptional editing of a CAA codon for Gln to a UAA codon for stop in APOB mRNA. A1CF binds to APOB mRNA and is probably responsible for docking the catalytic subunit, APOBEC1, to the mRNA to allow it to deaminate its target cytosine. It contains three RNA recognition motifs (RRMs) and a C-terminal double-stranded RNA binding motif (DSRM) that is not sequence specific, but highly specific for dsRNAs of various origin and structure.


Pssm-ID: 380729  Cd Length: 81  Bit Score: 173.43  E-value: 2.83e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 445 KLAPQILEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITIPALASQNPAIHPFTPPKLSAFVDEAKTYAAEYTLQTLGI 524
Cdd:cd19900   1 KSPPQILEEICQKNNWGQPVYQLHSTIGPDQRQLFLYKVTIPALASQYPNITPFQPNKLCRSVEEAKSYAAEYTLQQLGI 80

                .
gi 20357578 525 P 525
Cdd:cd19900  81 P 81
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
63-140 1.42e-45

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 155.44  E-value: 1.42e-45
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12249   1 GCEVFVGKIPRDVFEDELVPLFEKCGKIYELRLMMDFSGLNRGYAFVTYTNKEAAQRAVKTLNNYEIRPGKLLGVCIS 78
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
238-311 1.71e-38

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 135.84  E-value: 1.71e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 238 VKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12251   1 VKVLYVRNLMLSTTEEKLRELFSEY--GKVERVKKIKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLAKP 72
RRM3_RBM46 cd12496
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This ...
238-311 2.21e-38

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM3 of RBM46, also termed cancer/testis antigen 68 (CT68), is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409919 [Multi-domain]  Cd Length: 74  Bit Score: 135.91  E-value: 2.21e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 238 VKILYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12496   1 VKVLYVRNLMISTTEETIKAEFNKFKPGVVERVKKLRDYAFVHFFNREDAVAAMSVMNGKCIDGASIEVTLAKP 74
RRM1_RBM47 cd12485
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This ...
63-140 5.63e-38

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240929 [Multi-domain]  Cd Length: 78  Bit Score: 134.71  E-value: 5.63e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12485   1 GCEVFVGKIPRDVYEDELVPVFESVGRIYEMRLMMDFDGKNRGYAFVMYTQKHEAKRAVRELNNYEIRPGRLLGVCCS 78
RRM1_RBM46 cd12484
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This ...
63-140 1.76e-35

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409911 [Multi-domain]  Cd Length: 78  Bit Score: 128.09  E-value: 1.76e-35
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12484   1 GCEVFVGKIPRDMYEDELVPVFERAGKIYEFRLMMEFSGENRGYAFVMYTTKEEAQLAIKMLNNYEIRPGKFIGVCVS 78
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
238-311 4.08e-34

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 123.92  E-value: 4.08e-34
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 238 VKILYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12497   1 VKILYVRNLMIETTEDTIKKIFGQFNPGCVERVKKIRDYAFVHFASRDDAVVAMNNLNGTELEGSCIEVTLAKP 74
DSRM_A1CF-like cd19872
double-stranded RNA binding motif of APOBEC1 complementation factor (A1CF), RNA-binding ...
447-523 1.28e-32

double-stranded RNA binding motif of APOBEC1 complementation factor (A1CF), RNA-binding protein 46 (RBM46) and similar proteins; The family includes two dsRNA-binding motif-containing proteins, A1CF and RBM46. A1CF (also known as APOBEC1-stimulating protein) is an essential component of the apolipoprotein B mRNA editing enzyme complex which is responsible for the posttranscriptional editing of a CAA codon for Gln to a UAA codon for stop in APOB mRNA. A1CF binds to APOB mRNA and is probably responsible for docking the catalytic subunit, APOBEC1, to the mRNA to allow it to deaminate its target cytosine. RBM46 (also called cancer/testis antigen 68 (CT68), or RNA-binding motif protein 46) plays a novel role in the regulation of embryonic stem cell (ESC) differentiation by regulating the degradation of beta-catenin mRNA. It also regulates trophectoderm specification by stabilizing Cdx2 mRNA in early mouse embryos. Members of this family contain three RNA recognition motifs (RRMs) and a C-terminal double-stranded RNA binding motif (DSRM) that is not sequence specific, but highly specific for dsRNAs of various origin and structure.


Pssm-ID: 380701  Cd Length: 75  Bit Score: 119.70  E-value: 1.28e-32
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 447 APQILEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITIPALAsqnPAIHPFTPPKLSAFVDEAKTYAAEYTLQTLG 523
Cdd:cd19872   2 PVQILEEICQKNGWGEPVYQLLSTSSNNEVQLFIYKVTIPNLP---NGRLTFQPDKLCRTPEEAKVLAAEFVLAQLG 75
RRM2_hnRNPR cd12488
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
143-226 6.08e-31

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM2 of hnRNP R, a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. It contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif. hnRNP R binds RNA through its RRM domains.


Pssm-ID: 240932 [Multi-domain]  Cd Length: 85  Bit Score: 115.59  E-value: 6.08e-31
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 143 NCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVD 222
Cdd:cd12488   2 NNRLFVGSIPKNKTKENILEEFSKVTEGLVDVILYHQPDDKKKNRGFCFLEYEDHKSAAQARRRLMSGKVKVWGNVVTVE 81

                ....
gi 20357578 223 WAEP 226
Cdd:cd12488  82 WADP 85
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
63-140 9.22e-31

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 114.69  E-value: 9.22e-31
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12482   1 GTEVFVGKIPRDLYEDELVPLFEKAGPIWDLRLMMDpLSGQNRGYAFITFCNKEAAQEAVKLCDNYEIRPGKHLGVCIS 79
RRM2_hnRNPQ cd12489
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
143-226 1.10e-30

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 240933 [Multi-domain]  Cd Length: 85  Bit Score: 114.83  E-value: 1.10e-30
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 143 NCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVD 222
Cdd:cd12489   2 NNRLFVGSIPKSKTKEQIVEEFSKVTEGLTDVILYHQPDDKKKNRGFCFLEYEDHKTAAQARRRLMSGKVKVWGNVVTVE 81

                ....
gi 20357578 223 WAEP 226
Cdd:cd12489  82 WADP 85
RRM1_hnRNPQ cd12483
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
60-141 6.64e-28

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409910 [Multi-domain]  Cd Length: 84  Bit Score: 106.97  E-value: 6.64e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  60 PERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVC 138
Cdd:cd12483   2 PSVGTEIFVGKIPRDLFEDELVPLFEKAGPIWDLRLMMDpLTGLNRGYAFVTFCTKEAAQEAVKLCNNHEIRPGKHIGVC 81

                ...
gi 20357578 139 ASV 141
Cdd:cd12483  82 ISV 84
RRM1_DND1 cd12487
RNA recognition motif 1 (RRM1) found in vertebrate dead end protein homolog 1 (DND1); This ...
63-140 2.96e-27

RNA recognition motif 1 (RRM1) found in vertebrate dead end protein homolog 1 (DND1); This subgroup corresponds to the RRM1 of DND1, also termed RNA-binding motif, single-stranded-interacting protein 4, an RNA-binding protein that is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. For instance, DND1 binds cell cycle inhibitor, P27 (p27Kip1, CDKN1B), and cell cycle regulator and tumor suppressor, LATS2 (large tumor suppressor, homolog 2 of Drosophila). It helps maintain their protein expression through blocking the inhibitory function of microRNAs (miRNA) from these transcripts. DND1 may also impose another level of translational regulation to modulate expression of critical factors in embryonic stem (ES) cells. DND1 interacts specifically with apolipoprotein B editing complex 3 (APOBEC3), a multi-functional protein inhibiting retroviral replication. The DND1-APOBEC3 interaction may play a role in maintaining viability of germ cells and for preventing germ cell tumor development. DND1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409913 [Multi-domain]  Cd Length: 78  Bit Score: 104.84  E-value: 2.96e-27
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCAS 140
Cdd:cd12487   1 GSEVFIGKIPQDVYEDKLIPLFQSVGQLYEFRLMMTFSGLNRGFAYAKYASRRSAQAAITTLNGYELQKGCPITVCRS 78
DND1_DSRM pfam14709
double strand RNA binding domain from DEAD END PROTEIN 1; A C-terminal domain in human dead ...
447-523 3.76e-25

double strand RNA binding domain from DEAD END PROTEIN 1; A C-terminal domain in human dead end protein 1 (DND1_HUMAN) homologous to double strand RNA binding domains (PF00035, PF00333)


Pssm-ID: 405408  Cd Length: 80  Bit Score: 98.95  E-value: 3.76e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578   447 APQILEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITIPALASQNP-AIHPFTPPKLSAFVDEAKTYAAEYTLQTLG 523
Cdd:pfam14709   3 AVSHLEELCQKNKWGSPVYELHSTAGPDGKQLFTYKVVIPGIETPFPgVIWIFMPGKLCSTKEEAKEAAAEQVLEALG 80
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
238-311 6.28e-24

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 95.44  E-value: 6.28e-24
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 238 VKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12495   1 VKVLFVRNLANTVTEEILEKAFSQF--GKLERVKKLKDYAFIHFDERDGAVKAMDEMNGKDLEGENIEIVFAKP 72
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
66-510 7.01e-24

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 105.66  E-value: 7.01e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNyeirngrllgvcASVDNCR 145
Cdd:TIGR01628  91 IFVKNLDKSVDNKALFDTFSKFGNILSCKVATDENGKSRGYGFVHFEKEESAKAAIQKVNG------------MLLNDKE 158
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   146 LFVGGIPKTKKREEILSE------MKKVTEGVVD-----------VIVYPSAADKTKN--RGFAFVEYESHRAAAMARRK 206
Cdd:TIGR01628 159 VYVGRFIKKHEREAAPLKkftnlyVKNLDPSVNEdklrelfakfgEITSAAVMKDGSGrsRGFAFVNFEKHEDAAKAVEE 238
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   207 LLPGRIQLWGHG--IAVDWAEPEVE-------------VDEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVK 271
Cdd:TIGR01628 239 MNGKKIGLAKEGkkLYVGRAQKRAEreaelrrkfeelqQERKMKAQGVNLYVKNLDDTVTDEKLRELFSEC--GEITSAK 316
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   272 KIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPVDKdsyvrytrgtggRGTMLQGEYTYSLGQVYD 344
Cdd:TIGR01628 317 VMLDekgvsrgFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRKEQ------------RRAHLQDQFMQLQPRMRQ 384
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   345 PTTTYLGAPVFYAPQTYAAIPSLHFPATK-GHlsNRAIIRAPSVRGAAGVRGLGGRGYLAYTGLGRGYQVKGDKREDKLY 423
Cdd:TIGR01628 385 LPMGSPMGGAMGQPPYYGQGPQQQFNGQPlGW--PRMSMMPTPMGPGGPLRPNGLAPMNAVRAPSRNAQNAAQKPPMQPV 462
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   424 DILPGMELTPMNPVtlKPQgiklaPQILeeICQKNNWGQPVYQLHSAIGQDQRQ-----LFLYKITI-PALAS------- 490
Cdd:TIGR01628 463 MYPPNYQSLPLSQD--LPQ-----PQST--ASQGGQNKKLAQVLASATPQMQKQvlgerLFPLVEAIePALAAkitgmll 533
                         490       500
                  ....*....|....*....|....
gi 20357578   491 ---QNPAIHPF-TPPKLSAFVDEA 510
Cdd:TIGR01628 534 emdNSELLHLLeSPELLKSKVDEA 557
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
238-311 7.95e-24

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 95.10  E-value: 7.95e-24
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 238 VKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12494   1 VKVLFVRNLATTVTEEILEKTFSQF--GKLERVKKLKDYAFVHFEDRDAAVKAMDEMNGKEVEGEEIEIVLAKP 72
RRM2_DND1 cd12493
RNA recognition motif 2 (RRM2) found in vertebrate dead end protein homolog 1 (DND1); This ...
144-226 3.62e-20

RNA recognition motif 2 (RRM2) found in vertebrate dead end protein homolog 1 (DND1); This subgroup corresponds to the RRM2 of DND1, also termed RNA-binding motif, single-stranded-interacting protein 4. It is an RNA-binding protein that is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. For instance, DND1 binds cell cycle inhibitor, P27 (p27Kip1, CDKN1B), and cell cycle regulator and tumor suppressor, LATS2 (large tumor suppressor, homolog 2 of Drosophila). It helps maintain their protein expression through blocking the inhibitory function of microRNAs (miRNA) from these transcripts. DND1 may also impose another level of translational regulation to modulate expression of critical factors in embryonic stem (ES) cells. Moreover, DND1 interacts specifically with apolipoprotein B editing complex 3 (APOBEC3), a multi-functional protein inhibiting retroviral replication. The DND1-APOBEC3 interaction may play a role in maintaining viability of germ cells and for preventing germ cell tumor development. DND1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409916 [Multi-domain]  Cd Length: 83  Bit Score: 84.83  E-value: 3.62e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 144 CRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAadkTKNRG-FAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVD 222
Cdd:cd12493   3 CELSVDGLPVSMDESKLLMVLQMLTDGVESVLLHPSP---PKGKEvLAVVKYSSHRAAAMAKKALVEGSRNLCGEQVTVR 79

                ....
gi 20357578 223 WAEP 226
Cdd:cd12493  80 WLKP 83
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
66-134 2.43e-18

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 79.25  E-value: 2.43e-18
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPL 69
RRM smart00360
RNA recognition motif;
66-134 1.87e-17

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 76.86  E-value: 1.87e-17
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578     66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
66-131 3.12e-16

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 73.42  E-value: 3.12e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578    66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGG 66
RRM smart00360
RNA recognition motif;
241-306 8.61e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 72.24  E-value: 8.61e-16
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578    241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKF--GKVESVRLVRDketgkskgFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
DSRM_RBM46 cd19901
double-stranded RNA binding motif of RNA-binding protein 46 (RBM46) and similar proteins; ...
451-522 1.84e-15

double-stranded RNA binding motif of RNA-binding protein 46 (RBM46) and similar proteins; RBM46 (also known as cancer/testis antigen 68 (CT68), or RNA-binding motif protein 46) plays a novel role in the regulation of embryonic stem cell (ESC) differentiation by regulating the degradation of beta-catenin mRNA. It also regulates trophectoderm specification by stabilizing Cdx2 mRNA in early mouse embryos. RBM46 contains three RNA recognition motifs (RRMs) and a C-terminal double-stranded RNA binding motif (DSRM) that is not sequence specific, but highly specific for dsRNAs of various origin and structure.


Pssm-ID: 380730  Cd Length: 78  Bit Score: 71.48  E-value: 1.84e-15
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 451 LEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITIPALAsqNPAIHPFTPPKLSAFVDEAKTYAAEYTLQTL 522
Cdd:cd19901   6 LDYYCNKNNWSPPEYYLYSTTSQDGKVLLVYKVVIPAIA--NSSQSYFMPDKLCTTLEDAKELAAQFTLLHL 75
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
241-306 3.44e-15

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 70.39  E-value: 3.44e-15
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKF--GEVVSVRIVRDrdgkskgFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
66-137 1.33e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 69.36  E-value: 1.33e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:COG0724   4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDrETGRSRGFGFVEMPDDEEAQAAIEALNGAEL-MGRTLKV 75
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
66-301 1.50e-14

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 76.77  E-value: 1.50e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGVCASV--- 141
Cdd:TIGR01628   3 LYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRDSVtRRSLGYGYVNFQNPADAERALETMNFKRL-GGKPIRIMWSQrdp 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   142 -----DNCRLFVGGIPK---TKKREEILSEMKKVTEGVVdvivypsAADKT-KNRGFAFVEYESHRAAAMARRKLlpgri 212
Cdd:TIGR01628  82 slrrsGVGNIFVKNLDKsvdNKALFDTFSKFGNILSCKV-------ATDENgKSRGYGFVHFEKEESAKAAIQKV----- 149
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   213 qlwgHGIAVDWAEPEVE-----VDEDTMSSVKI--LYVRNLMLSTSEEMIEK---EFNNIKPGAVERVK--KIRDYAFVH 280
Cdd:TIGR01628 150 ----NGMLLNDKEVYVGrfikkHEREAAPLKKFtnLYVKNLDPSVNEDKLRElfaKFGEITSAAVMKDGsgRSRGFAFVN 225
                         250       260
                  ....*....|....*....|.
gi 20357578   281 FSNREDAVEAMKALNGKVLDG 301
Cdd:TIGR01628 226 FEKHEDAAKAVEEMNGKKIGL 246
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
241-311 6.46e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 67.05  E-value: 6.46e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:COG0724   4 IYVGNLPYSVTEEDLRELFSEY--GEVTSVKLITDretgrsrgFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARP 80
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
67-126 9.66e-14

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 66.49  E-value: 9.66e-14
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  67 FIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12361   3 FVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQtGQSKGCAFVTFSTREEALRAIEALHN 63
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
66-137 4.71e-13

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 64.46  E-value: 4.71e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12398   3 VFVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDREtGKPKGYGFCEFRDAETALSAVRNLNGYEL-NGRPLRV 74
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
241-308 8.56e-13

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 63.57  E-value: 8.56e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12340   2 LFVRPFPPDTSESAIREIFSPY--GPVKEVKMLSDsnFAFVEFEELEDAIRAKDSVHGRVLNNEPLYVTY 69
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
241-305 2.70e-12

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 62.25  E-value: 2.70e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578   241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERV-------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIE 305
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKF--GPIKSIrlvrdetGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
66-137 9.58e-12

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 60.65  E-value: 9.58e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd21608   2 LYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDrETGRSRGFGFVTFSTAEAAEAAIDALNGKEL-DGRSIVV 73
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
239-306 2.17e-11

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 59.93  E-value: 2.17e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNI-KPGAVERVKKiRD---------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12318   1 TTLFVKNLNFKTTEEALKKHFEKCgPIRSVTIAKK-KDpkgpllsmgYGFVEFKSPEAAQKALKQLQGTVLDGHALEL 77
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
241-311 2.56e-11

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 59.53  E-value: 2.56e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPgaVER---VK-----KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12413   2 LFVRNLPYDTTDEQLEELFSDVGP--VKRcfvVKdkgkdKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKVELAKK 78
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
56-203 3.64e-11

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 65.04  E-value: 3.64e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    56 DAAPPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:TIGR01659 100 DNDTNNSGTNLIVNYLPQDMTDRELYALFRTIGPINTCRIMRDYkTGYSFGYAFVDFGSEADSQRAIKNLNGITVRNKRL 179
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578   135 LGVCA-----SVDNCRLFVGGIPKTKKREEILSEMKKVTEGVVDVIVypsaADKT--KNRGFAFVEYESHRAAAMA 203
Cdd:TIGR01659 180 KVSYArpggeSIKDTNLYVTNLPRTITDDQLDTIFGKYGQIVQKNIL----RDKLtgTPRGVAFVRFNKREEAQEA 251
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
59-141 7.93e-11

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 58.39  E-value: 7.93e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  59 PPERgceIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGVC 138
Cdd:cd12412   1 IPNR---IFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGVSKGYGFVTFETQEDAEKIQKWGANLVFK-GKKLNVG 76

                ...
gi 20357578 139 ASV 141
Cdd:cd12412  77 PAI 79
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
241-309 9.34e-11

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 57.95  E-value: 9.34e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12414   2 LIVRNLPFKCTEDDLKKLFSKF--GKVLEVTipkkpdgKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRPVAVDWA 75
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
65-134 1.53e-10

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 57.27  E-value: 1.53e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRM----MMDFNGNNRGYAFVTFSNKVEAKNAIkQLNNYEIRNGRL 134
Cdd:cd12298   2 EIRVRNLDFELDEEALRGIFEKFGEIESINIpkkqKNRKGRHNNGFAFVTFEDADSAESAL-QLNGTLLDNRKI 74
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
71-131 1.85e-10

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 57.18  E-value: 1.85e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  71 LPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12414   7 LPFKCTEDDLKKLFSKFGKVLEVTIPKKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKG 67
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
62-307 3.22e-10

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 61.88  E-value: 3.22e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNgrllgvcaS 140
Cdd:TIGR01661  88 KGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDnVTGLSKGVGFIRFDKRDEADRAIKTLNGTTPSG--------C 159
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   141 VDNCRLFVGGIPKTKKREEILSEMKKV----TEGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKLLPGRIQLWG 216
Cdd:TIGR01661 160 TEPITVKFANNPSSSNSKGLLSQLEAVqnpqTTRVPLSTILTAAGIGPMHHAAARFRPSAGDFTAVLAHQQQQHAVAQQH 239
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   217 HG-----IAVDWAEPEVEVDEDTMSS---VKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVH 280
Cdd:TIGR01661 240 AAqraspPATDGQTAGLAAGAQISASdgaGYCIFVYNLSPDTDETVLWQLFGPF--GAVQNVKIIRDlttnqckgYGFVS 317
                         250       260
                  ....*....|....*....|....*..
gi 20357578   281 FSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:TIGR01661 318 MTNYDEAAMAILSLNGYTLGNRVLQVS 344
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
40-312 4.49e-10

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 62.24  E-value: 4.49e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    40 EKENGQRKYGGPPPGWDA------APPERGCE-IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTF 111
Cdd:TIGR01622  84 RRRRDDRRSRREKPRARDgtpeplTEDERDRRtVFVQQLAARARERDLYEFFSKVGKVRDVQIIKDRNSRrSKGVGYVEF 163
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   112 SNKVEAKNAIkQLNnyeirnGRLLGvcasvdncrlfvgGIPktkkreeilsemkkvtegvvdVIVYPSAADKtknrgfaf 191
Cdd:TIGR01622 164 YDVDSVQAAL-ALT------GQKLL-------------GIP---------------------VIVQLSEAEK-------- 194
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   192 veyesHRAAAMARrkllpgriqlwghgiavdwaepEVEVDEDTMSSVKILYVRNLMLSTSEEMIEKEFNNIkpGAVERVK 271
Cdd:TIGR01622 195 -----NRAARAAT----------------------ETSGHHPNSIPFHRLYVGNLHFNITEQDLRQIFEPF--GEIEFVQ 245
                         250       260       270       280
                  ....*....|....*....|....*....|....*....|....*....
gi 20357578   272 KIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPV 312
Cdd:TIGR01622 246 LQKDpetgrskgYGFIQFRDAEQAKEALEKMNGFELAGRPIKVGLGNDF 294
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
241-306 6.02e-10

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 55.31  E-value: 6.02e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12343   2 IFVGNLPDAATSEELRALFE--KYGKVTECDIVKNYAFVHMEKEEDAEDAIKALNGYEFMGSRINV 65
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
241-312 7.45e-10

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 55.76  E-value: 7.45e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKP-GAV--------ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12223   4 LYVGNLPPSVTEEVLLREFGRFGPlASVkimwprteEERRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKLGWGKA 83

                .
gi 20357578 312 V 312
Cdd:cd12223  84 V 84
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
241-309 7.71e-10

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 55.57  E-value: 7.71e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRD-----------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12319   3 LFVKNLNFSTTNQHLTDVFKHLDGFVFARVKTKPDpkrpgktlsmgFGFVGFKTKEQAQAALKAMDGFVLDGHKLEVKFS 82
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
68-134 7.93e-10

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 55.49  E-value: 7.93e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  68 IGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12375   4 VNYLPQSMTQEELRSLFGAIGPIESCKLVRDKItGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRL 71
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
65-124 9.36e-10

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 55.50  E-value: 9.36e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQL 124
Cdd:cd12632   7 KLFIGQIPRNLEEKDLRPLFEQFGKIYELTVLKDkYTGMHKGCAFLTYCARESALKAQSAL 67
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
239-309 1.00e-09

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 55.35  E-value: 1.00e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGK----VLDGSPIEV 306
Cdd:cd12313   3 NVLILRGLDVLTTEEDILSALQAHADLPIKDVRLIRDkltgtsrgFAFVEFSSLEDATQVMDALQNLlppfKIDGRVVSV 82

                ...
gi 20357578 307 TLA 309
Cdd:cd12313  83 SYA 85
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
241-309 1.16e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 54.87  E-value: 1.16e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd21608   2 LYVGNLSWDTTEDDLRDLFS--EFGEVESAKVITDretgrsrgFGFVTFSTAEAAEAAIDALNGKELDGRSIVVNEA 76
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
241-308 1.83e-09

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 54.12  E-value: 1.83e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDY-------AFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12418   3 VRVSNLHPDVTEEDLRELFGRV--GPVKSVKINYDRsgrstgtAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
146-222 2.13e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 53.83  E-value: 2.13e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVTEgVVDVIVYPSaaDKTKNRGFAFVEYESHRAAAMARRKLlpGRIQLWGHGIAVD 222
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFGE-VVSVRIVRD--RDGKSKGFAFVEFESPEDAEKALEAL--NGTELGGRPLKVS 72
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
241-309 2.17e-09

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 54.17  E-value: 2.17e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFnniKP-GAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12284   1 LYVGSLHFNITEDMLRGIF---EPfGKIEFVQLQKDpetgrskgYGFIQFRDAEDAKKALEQLNGFELAGRPMKVGHV 75
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
66-143 2.89e-09

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 53.78  E-value: 2.89e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGVCASVDN 143
Cdd:cd12284   1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPeTGRSKGYGFIQFRDAEDAKKALEQLNGFELA-GRPMKVGHVTER 78
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
66-137 3.00e-09

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 53.72  E-value: 3.00e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12380   4 VYVKNFGEDVDDDELKELFEKYGKITSAKVMKDDSGKSKGFGFVNFENHEAAQKAVEELNGKEL-NGKKLYV 74
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
241-309 3.67e-09

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 53.43  E-value: 3.67e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12381   4 LYVKNLDDTIDDEKLREEFS--PFGTITSAKVMTDeggrskgFGFVCFSSPEEATKAVTEMNGRIIGGKPLYVALA 77
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
64-135 5.74e-09

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 52.67  E-value: 5.74e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDfngnnRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLL 135
Cdd:cd12354   1 TTVYVGNITKGLTEALLQQTFSPFGQILEVRVFPD-----KGYAFIRFDSHEAATHAIVSVNGTII-NGQAV 66
DSRM_SON-like cd19870
double-stranded RNA binding motif of protein SON and similar proteins; Protein SON (also known ...
449-524 5.90e-09

double-stranded RNA binding motif of protein SON and similar proteins; Protein SON (also known as Bax antagonist selected in saccharomyces 1 (BASS1), negative regulatory element-binding protein (NRE-binding protein), or protein DBP-5, or SON3) is an RNA-binding protein which acts as an mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. It specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Members of this group contain a double-stranded RNA binding motif (DSRM) at the C-terminus. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure.


Pssm-ID: 380699  Cd Length: 75  Bit Score: 52.67  E-value: 5.90e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 449 QILEEICQKNNWGQPVYQLHSAIGQDQRQLFLYKITI------PALASQNPaihpftppklsafvDEAKTYAAEYTLQTL 522
Cdd:cd19870   6 SALMELCNKRKWGPPEFRLVEESGPPHRKHFLFKVVVngveyqPSVASGNK--------------KDAKAQAATVALQAL 71

                ..
gi 20357578 523 GI 524
Cdd:cd19870  72 GL 73
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
65-142 9.11e-09

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 52.42  E-value: 9.11e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGVCASVD 142
Cdd:cd21609   1 RLYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDrYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEV-GGREIKVNITEK 78
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
241-309 9.60e-09

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 52.02  E-value: 9.60e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12352   1 LYVGNLDRQVTEDLILQLFSQI--GPCKSCKMITEhggndpYCFVEFYEHNHAAAALQAMNGRKILGKEVKVNWA 73
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
86-127 1.01e-08

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 52.58  E-value: 1.01e-08
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20357578  86 KIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd12278  32 GSGKIVGIYMPVDETGKTKGFAFVEYATPEEAKKAVKALNGY 73
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
241-310 1.27e-08

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 52.10  E-value: 1.27e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12449   3 LFVGGLSFDTNEQSLEEVFS--KYGQISEVVVVKDretqrsrgFGFVTFENPDDAKDAMMAMNGKSLDGRQIRVDQAG 78
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
66-125 1.30e-08

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 51.92  E-value: 1.30e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN----RGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12355   2 LWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLFHKTGPLkgqpRGYCFVTFETKEEAEKAIECLN 65
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
239-307 1.41e-08

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 51.79  E-value: 1.41e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIkPGAVE-RVKKIRDYAFVHFSNREDAVEAMKALNG-KVLDGSPIEVT 307
Cdd:cd12247   3 KILFLQNLPEETTKEMLEMLFNQF-PGFKEvRLVPRRGIAFVEFETEEQATVALQALQGfKITPGHAMKIS 72
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
239-308 1.43e-08

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 51.81  E-value: 1.43e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 239 KILYVRNLMLST--SEEMIEKEFNniKPGAVERVKKIRD--YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12431   2 QHLVVANGGLGNgvSREQLLEVFE--KYGTVEDIVMLPGkpYSFVSFKSVEEAAKAYNALNGKELELPQQNVPL 73
RRM smart00360
RNA recognition motif;
145-207 1.61e-08

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 51.44  E-value: 1.61e-08
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578    145 RLFVGGIPKTKKREEILSEMKKVteGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKL 207
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKF--GKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEAL 61
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
66-134 1.90e-08

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 51.56  E-value: 1.90e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12392   5 LFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTI 73
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
62-126 1.97e-08

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 51.43  E-value: 1.97e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12651   1 KDTNLYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDkLTGRPRGVAFVRYDKREEAQAAISALNG 66
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
66-134 2.53e-08

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 50.69  E-value: 2.53e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngNNrgYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12343   2 IFVGNLPDAATSEELRALFEKYGKVTECDIV-----KN--YAFVHMEKEEDAEDAIKALNGYEFMGSRI 63
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
66-126 2.69e-08

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 50.85  E-value: 2.69e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12353   2 IFVGDLSPEIETEDLKEAFAPFGEISDARVVKDTQtGKSKGYGFVSFVKKEDAENAIQGMNG 63
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
61-132 2.98e-08

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 51.03  E-value: 2.98e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  61 ERgcEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNG 132
Cdd:cd12636   1 ER--KLFVGMLSKKCNESDVRIMFSPYGSIEECTVLRDQNGKSRGCAFVTFTSRQCAVNAIKAMHHSQTMEG 70
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
241-306 3.29e-08

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 51.08  E-value: 3.29e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12363   4 LGVFGLSLYTTERDLREVFS--RYGPIEKVQVVYDqqtgrsrgFGFVYFESVEDAKEAKERLNGQEIDGRRIRV 75
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
66-129 3.62e-08

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 50.87  E-value: 3.62e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12382   4 LFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDrETNKSRGFAFVTFESPADAKDAARDMNGKEL 68
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
66-134 3.68e-08

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 50.69  E-value: 3.68e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12362   1 LFVYHLPNEFTDQDLYQLFAPFGNVVSAKVFVDkNTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRL 70
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
66-125 3.83e-08

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 51.93  E-value: 3.83e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd21615  21 LFVGRLDYSLTELELQKKFSKFGEIEKIRIVRDKEtGKSRGYAFIVFKSESDAKNAFKEGN 81
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
66-122 4.33e-08

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 50.30  E-value: 4.33e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIK 122
Cdd:cd12391   2 VFVSNLDYSVPEDKIREIFSGCGEITDVRLVKNYKGKSKGYCYVEFKDEESAQKALK 58
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
241-306 4.45e-08

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 50.26  E-value: 4.45e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12240   1 LYVGNLSFYTTEEQIYELFS--KCGDIKRIIMGLDkfkktpcgFCFVEYYSREDAENAVKYLNGTKLDDRIIRV 72
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
65-134 4.63e-08

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 50.60  E-value: 4.63e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN---GNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd21619   3 TIYVGNIDMTINEDALEKIFSRYGQVESVRRPPIHTdkaDRTTGFGFIKYTDAESAERAMQQADGILLGRRRL 75
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
31-317 5.70e-08

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 55.70  E-value: 5.70e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    31 QSIILQ-TLLEKENGQR---KYGGPPPGwdAAPPERgceIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRG 105
Cdd:TIGR01622 183 IPVIVQlSEAEKNRAARaatETSGHHPN--SIPFHR---LYVGNLHFNITEQDLRQIFEPFGEIEFVQLQKDPEtGRSKG 257
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   106 YAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGV----------CASVDNCRLFVGGIPKTKKR---EEILSEMKKVTEGVV 172
Cdd:TIGR01622 258 YGFIQFRDAEQAKEALEKMNGFELA-GRPIKVglgndftpesDANLAQRFQDQDGSAFSGAGlntPARSQLMRKLARDNE 336
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   173 DViVYPSAADKTKNRGFAFVEYEshRAAAMarRKLLPGR---IQLWGHGIAVDWAEPEVeVDEDTMSSVKILYVRNlMLS 249
Cdd:TIGR01622 337 KG-TGGLAIPGTDVGGVNMNNYS--RDGLM--RKLAPTDeppAVIPETQILKPKAETSF-VPVNVNLASRCLVLSN-MFD 409
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   250 TSEEMIEKEFNNIKPGAVERVKK-------------IRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEvtlAKPVDKDS 316
Cdd:TIGR01622 410 PATEEEPNWDKEIEDDVREECSKyggvvhiyvddknSAGDIYLKFDSVQAAEAAIKALNGRYFGGKMIT---AAFVVDAV 486

                  .
gi 20357578   317 Y 317
Cdd:TIGR01622 487 Y 487
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
241-307 5.70e-08

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 50.03  E-value: 5.70e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERV--------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12316   2 LFVRNLPFTATEDELRELFEAF--GKISEVhipldkqtKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGRLLHVL 74
RRM1_RRT5 cd12409
RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) ...
241-311 6.11e-08

RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins; This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409843 [Multi-domain]  Cd Length: 84  Bit Score: 50.35  E-value: 6.11e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAV----ERVKKIRDY-------AFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12409   2 VYISNLSYSTTEEELEELLKDYKPVSVlipsYTVRGFRSRkhrplgiAYAEFSSVEEAEKVVKDLNGKVFKGRKLFVKLH 81

                ..
gi 20357578 310 KP 311
Cdd:cd12409  82 VP 83
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
241-310 6.25e-08

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 50.10  E-value: 6.25e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12382   4 LFIGGLNTETNEKALEAVFG--KYGRIVEVLLMKDretnksrgFAFVTFESPADAKDAARDMNGKELDGKAIKVEQAT 79
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
66-126 7.01e-08

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 49.93  E-value: 7.01e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12376   3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDqLTGVSRGVGFIRFDKRIEAEEAIKGLNG 64
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
71-127 1.00e-07

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 49.43  E-value: 1.00e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  71 LPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd12408   7 LSEDATEEDLRELFRPFGPISRVYLAKDKEtGQSKGFAFVTFETREDAERAIEKLNGF 64
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
63-123 1.07e-07

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 50.12  E-value: 1.07e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQ 123
Cdd:cd12676   1 GRTLFVRNLPFDATEDELYSHFSQFGPLKYARVVKDpATGRSKGTAFVKFKNKEDADNCLSA 62
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
239-311 1.11e-07

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 49.39  E-value: 1.11e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIKP--GAV----ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12674   1 TTLFVRNLPFDVTLESLTDFFSDIGPvkHAVvvtdPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAKP 79
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
66-140 1.13e-07

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 49.21  E-value: 1.13e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGVCAS 140
Cdd:cd12371   3 IYVASVHPDLSEDDIKSVFEAFGKIKSCSLAPDPEtGKHKGYGFIEYENPQSAQDAIASMNLFDL-GGQYLRVGRA 77
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
65-126 1.49e-07

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 49.19  E-value: 1.49e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12633   1 KLFVGSVPRTITEQEVRPMFEEHGNVLEVAIIKDkRTGHQQGCCFVKYSTRDEADRAIRALHN 63
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
66-125 1.54e-07

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 48.95  E-value: 1.54e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12635   4 LFVGMLGKQQSEDDVRRLFEPFGSIEECTILRGPDGNSKGCAFVKFSSHAEAQAAINALH 63
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
66-125 1.54e-07

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 48.92  E-value: 1.54e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNG-NNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12637   2 LFVGSLPKTATEQEVRDLFEAYGEVEEVYLMKDPVTqQGTGCAFVKFAYKEEALAAIRSLN 62
RRM_hnRNPC_like cd12341
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C) ...
64-134 1.84e-07

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins; This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes.


Pssm-ID: 409778 [Multi-domain]  Cd Length: 68  Bit Score: 48.40  E-value: 1.84e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  64 CEIFIGKLPRDLF-EDELIPLCEKIGKIYEMRMmmdfngnNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12341   1 SRIFVGNLPTDQMtKEDLEEIFSKYGKILGISL-------HKGYGFVQFDNEEDARAAVAGENGRTIKGQRL 65
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
66-133 1.96e-07

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 48.60  E-value: 1.96e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDfngnnRGYAFVTFSNKVEAKNAIKQLNNYEIrNGR 133
Cdd:cd12622   3 VYVGNLPPEVTQADLIPLFQNFGVIEEVRVQRD-----KGFGFVKYDTHEEAALAIQQLNGQPF-LGR 64
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
241-309 1.97e-07

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 48.58  E-value: 1.97e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12614   1 LYVGNLDPRVTEDLLQEIFAVT--GPVENCKIIPDknskgvnYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKVNWA 74
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
239-306 2.11e-07

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 48.77  E-value: 2.11e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFnnIKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12236   2 KTLFVARLSYDTTESKLRREF--EKYGPIKRVRLVRDkktgksrgYAFIEFEHERDMKAAYKHADGKKIDGRRVLV 75
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
146-207 2.16e-07

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 48.38  E-value: 2.16e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578   146 LFVGGIPKTKKREEILSEMKKVtEGVVDVIVYPSAadKTKNRGFAFVEYESHRAAAMARRKL 207
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKF-GPIKSIRLVRDE--TGRSKGFAFVEFEDEEDAEKAIEAL 59
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
66-135 2.19e-07

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 48.42  E-value: 2.19e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12231   3 LFIGGLPNYLNEDQVKELLQSFGKLKAFNLVKDsATGLSKGYAFCEYVDDNVTDQAIAGLNGMQLGDKKLL 73
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
66-137 2.27e-07

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 48.34  E-value: 2.27e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYeIRNGRLLGV 137
Cdd:cd12307   2 VYIGHLPHGFYEPELRKYFSQFGTVTRLRLSRSKKtGKSKGYAFVEFEDPEVAKIVAETMNNY-LLFERLLKC 73
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
250-310 2.58e-07

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 48.21  E-value: 2.58e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 250 TSEEMIEKEFnniKP-GAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12233  12 TREEDIEKLF---EPfGPLVRCDIRKTFAFVEFEDSEDATKALEALHGSRIDGSVLTVEFVK 70
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
239-306 2.74e-07

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 48.29  E-value: 2.74e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD----------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd21619   2 NTIYVGNIDMTINEDALEKIFS--RYGQVESVRRPPIhtdkadrttgFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
66-137 2.75e-07

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 48.09  E-value: 2.75e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12377   2 IFVYNLAPDADESLLWQLFGPFGAVQNVKIIRDFTTNKcKGYGFVTMTNYDEAAVAIASLNGYRL-GGRVLQV 73
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
66-131 3.58e-07

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 47.79  E-value: 3.58e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12448   1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDReTGQPKGFGYVDFSTIDSAEAAIDALGGEYIDG 67
RRM_SKAR cd12681
RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; ...
241-308 4.20e-07

RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; This subgroup corresponds to the RRM of SKAR, also termed polymerase delta-interacting protein 3 (PDIP3), 46 kDa DNA polymerase delta interaction protein (PDIP46), belonging to the Aly/REF family of RNA binding proteins that have been implicated in coupling transcription with pre-mRNA splicing and nucleo-cytoplasmic mRNA transport. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. SKAR contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410082 [Multi-domain]  Cd Length: 69  Bit Score: 47.27  E-value: 4.20e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD-YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12681   3 LTVSNLHPSVTEDDIVELFSVI--GALKRARLVRPgVAEVVYVRREDAITAIKKYNNRELDGQPMKCKL 69
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
243-300 4.23e-07

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 47.50  E-value: 4.23e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 243 VRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLD 300
Cdd:cd12408   4 VTNLSEDATEEDLRELFR--PFGPISRVYLAKDketgqskgFAFVTFETREDAERAIEKLNGFGYD 67
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
68-134 5.59e-07

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 47.39  E-value: 5.59e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  68 IGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12649   5 VNYLPQDLTDREFRALFRAIGPVNTCKIVRDKkTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRL 72
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
241-306 6.20e-07

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 47.41  E-value: 6.20e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERV--------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12566   5 LFLRNLPYSTKEDDLQKLFS--KFGEVSEVhvpidkktKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLIHI 76
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
79-126 6.59e-07

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 47.23  E-value: 6.59e-07
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*...
gi 20357578  79 ELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12320  16 EIRELFSPFGQLKSVRLPKKFDGSHRGFAFVEFVTKQEAQNAMEALKS 63
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
66-135 7.56e-07

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 47.07  E-value: 7.56e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLL 135
Cdd:cd12674   3 LFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDpETKKSRGYGFVSFSTHDDAEEALAKLKNRKL-SGHIL 72
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
241-308 7.88e-07

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 46.87  E-value: 7.88e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERV-----------KKIRDYAFVHFSNREDAVEAMKaLNGKVLDGSPIEVTL 308
Cdd:cd12298   3 IRVRNLDFELDEEALRGIFE--KFGEIESInipkkqknrkgRHNNGFAFVTFEDADSAESALQ-LNGTLLDNRKISVSL 78
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
241-311 9.59e-07

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 46.60  E-value: 9.59e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12358   1 LYIGNLSSDVNESDLRQLFEEHKIPVSSVLVKKGGYAFVDCPDQSWADKAIEKLNGKILQGKVIEVEHSVP 71
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
66-137 9.76e-07

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 46.45  E-value: 9.76e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  66 IFIGKLPRDLFEDEL----IPLcekiGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12347   1 LYVGGLAEEVDEKVLhaafIPF----GDIVDIQIPLDYeTEKHRGFAFVEFEEAEDAAAAIDNMNESEL-FGRTIRV 72
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
66-129 1.05e-06

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 46.39  E-value: 1.05e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12365   1 LHVGKLTRNVTKDHLKEIFSVYGTVKNVDLPIDrEPNLPRGYAYVEFESPEDAEKAIKHMDGGQI 65
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
66-137 1.10e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 46.74  E-value: 1.10e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12671   9 VFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDReTGKPKGYGFCEYQDQETALSAMRNLNGYEL-NGRALRV 80
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
63-136 1.18e-06

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 46.50  E-value: 1.18e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLnnyeirNGRLLG 136
Cdd:cd12381   1 GVNLYVKNLDDTIDDEKLREEFSPFGTITSAKVMTDEGGRSKGFGFVCFSSPEEATKAVTEM------NGRIIG 68
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
65-132 1.32e-06

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 46.59  E-value: 1.32e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNG 132
Cdd:cd12634   3 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 70
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
66-125 1.46e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 46.15  E-value: 1.46e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12618   5 VFVGDLSPEITTEDIKAAFAPFGRISDARVVKDMaTGKSKGYGFVSFFNKWDAENAIQQMG 65
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
241-308 1.50e-06

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 46.16  E-value: 1.50e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNnikP-GAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12377   2 IFVYNLAPDADESLLWQLFG---PfGAVQNVKIIRDfttnkckgYGFVTMTNYDEAAVAIASLNGYRLGGRVLQVSF 75
RRM_TRMT2A cd12439
RNA recognition motif (RRM) found in tRNA (uracil-5-)-methyltransferase homolog A (TRMT2A) and ...
260-311 1.76e-06

RNA recognition motif (RRM) found in tRNA (uracil-5-)-methyltransferase homolog A (TRMT2A) and similar proteins; This subfamily corresponds to the RRM of TRMT2A, also known as HpaII tiny fragments locus 9c protein (HTF9C), a novel cell cycle regulated protein. It is an independent biologic factor expressed in tumors associated with clinical outcome in HER2 expressing breast cancer. The function of TRMT2A remains unclear although by sequence homology it has a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), related to RNA methyltransferases.


Pssm-ID: 409873 [Multi-domain]  Cd Length: 79  Bit Score: 46.08  E-value: 1.76e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20357578 260 NNIKPgavERVKKIR--DYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12439  29 LGLKP---HKIKLIGrqTFAFVTFRNEEDRDKALKVLNGHKWKGKVLSAKLAKP 79
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
241-311 2.02e-06

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 45.70  E-value: 2.02e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFnnIKPGAVERVKKIRD---YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12373   2 VYVGNLGPRVTKRELEDAF--EKYGPLRNVWVARNppgFAFVEFEDPRDAEDAVRALDGRRICGSRVRVELSRG 73
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
241-317 2.06e-06

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 45.93  E-value: 2.06e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEM----IEKEFNNIKPGAVERVK--KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAkpVDK 314
Cdd:cd12675   3 LIIRNLPWSIKKPVhlkkLFGRYGKVVEATIPRKKggKLSGFAFVTMKGRKNAEEALESVNGLEIDGRPVAVDWA--VSK 80

                ...
gi 20357578 315 DSY 317
Cdd:cd12675  81 NTW 83
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
65-137 2.11e-06

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 45.93  E-value: 2.11e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12449   2 KLFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDrETQRSRGFGFVTFENPDDAKDAMMAMNGKSL-DGRQIRV 74
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
62-125 2.14e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 45.87  E-value: 2.14e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12774   4 RDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDqVTGVSRGVGFIRFDKRIEAEEAIKGLN 68
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
77-133 2.19e-06

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 45.68  E-value: 2.19e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  77 EDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGR 133
Cdd:cd12363  15 ERDLREVFSRYGPIEKVQVVYDqQTGRSRGFGFVYFESVEDAKEAKERLNGQEI-DGR 71
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
62-125 2.34e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 45.87  E-value: 2.34e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12775   4 RDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDqVTGVSRGVGFIRFDKRIEAEEAIKGLN 68
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
241-309 2.47e-06

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 45.50  E-value: 2.47e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12447   2 LFVGGLSWNVDDPWLKKEFEKY--GGVISARVITDrgsgrskgYGYVDFATPEAAQKALAAMSGKEIDGRQINVDFS 76
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
241-309 2.52e-06

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 45.59  E-value: 2.52e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVK--------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12399   1 LYVGNLPYSASEEQLKSLFGQF--GAVFDVKlpmdretkRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNEA 75
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
66-127 2.60e-06

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 45.39  E-value: 2.60e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd12652   3 LYVSGLPKTMTQKELEQLFSQFGRIITSRILCDNVtGLSRGVGFIRFDKRVEAERAIKALNGT 65
RRM_RBM25 cd12446
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; ...
66-135 2.66e-06

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor.


Pssm-ID: 409880 [Multi-domain]  Cd Length: 83  Bit Score: 45.60  E-value: 2.66e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLfEDELI-PLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12446   3 VFVGNIPDDV-SDDFIrQLLEKCGKVLSWKRVQDPSGKLKAFGFCEFEDPEGALRALRLLNGLELGGKKLL 72
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
71-134 2.68e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 45.38  E-value: 2.68e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  71 LPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12564   8 LPSSITEDRLRKLFSAFGTITDVQLKYTKDGKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRI 71
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
66-131 2.87e-06

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 45.31  E-value: 2.87e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDfnGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12241   5 LYVRNLPYKISSEELYDLFGKYGAIRQIRIGNT--KETRGTAFVVYEDIFDAKNACDHLSGFNVCN 68
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
238-308 2.93e-06

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 45.23  E-value: 2.93e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 238 VKIlYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12609   1 WKI-FVGNVSATCTSDELRGLFEEF--GRVVECDKVKDYAFVHMEREEEALAAIEALNGKEVKGRRINVEL 68
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
66-131 3.32e-06

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 45.09  E-value: 3.32e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNrGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12352   1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMITEHGGND-PYCFVEFYEHNHAAAALQAMNGRKILG 65
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
66-137 3.47e-06

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 45.12  E-value: 3.47e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12447   2 LFVGGLSWNVDDPWLKKEFEKYGGVISARVITDRGsGRSKGYGYVDFATPEAAQKALAAMSGKEI-DGRQINV 73
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
242-307 4.07e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 44.80  E-value: 4.07e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 242 YVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKaLNGKVLDGSPIEVT 307
Cdd:cd12395   3 FVGNLPFDIEEEELRKHFE--DCGDVEAVRIVRDretgigkgFGYVLFKDKDSVDLALK-LNGSKLRGRKLRVK 73
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
241-310 4.50e-06

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 45.09  E-value: 4.50e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIE----KEFNniKPGAVERVKKIRD-----YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12453   5 LFVASLSSARSDEELCaavtNHFS--KWGELLNVKVLKDwsnrpYAFVQYTNTEDAKNALVNGHNTLLDGRHLRVEKAK 81
RRM1_hnRNPM_like cd12385
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
66-137 4.86e-06

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409819 [Multi-domain]  Cd Length: 76  Bit Score: 44.72  E-value: 4.86e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLC-EKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12385   2 VFISNIPYDYKWQDLKDLFrEKVGEVTYVELFKDENGKSRGCGIVEFKDLESVQKALETMNRYEL-KGRKLVV 73
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
241-306 4.97e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 44.61  E-value: 4.97e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12564   3 LIVKNLPSSITEDRLRKLFS--AFGTITDVQlkytkdgKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRITV 73
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
241-309 5.11e-06

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 44.54  E-value: 5.11e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFN---NIKPGAVERV---KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd21610   5 VYVGNLAKTVTNELLKDFFSekgKVLGAKVQRTpgtSKSNGFGFVSFSSEEDVEAAIQALNNSVLEGQKIRVNKA 79
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
57-142 5.15e-06

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 48.78  E-value: 5.15e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    57 AAPPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEIRNgRLL 135
Cdd:TIGR01661 263 SASDGAGYCIFVYNLSPDTDETVLWQLFGPFGAVQNVKIIRDLTTNQcKGYGFVSMTNYDEAAMAILSLNGYTLGN-RVL 341

                  ....*..
gi 20357578   136 GVCASVD 142
Cdd:TIGR01661 342 QVSFKTN 348
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
66-137 5.34e-06

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 44.72  E-value: 5.34e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYeIRNGRLLGV 137
Cdd:cd12566   5 LFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDKkTKKSKGFAYVLFLDPEDAVQAYNELDGK-VFQGRLIHI 76
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
64-135 5.44e-06

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 44.58  E-value: 5.44e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLL 135
Cdd:cd12393   2 STVYVSNLPFSLTNNDLHQIFSKYGKVVKVTILKDkETRKSKGVAFVLFLDRESAHNAVRAMNNKEL-FGRTL 73
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
66-124 5.81e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 44.60  E-value: 5.81e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQL 124
Cdd:cd12617   4 VFVGDLSPEITTEDIKSAFAPFGKISDARVVKDMaTGKSKGYGFVSFYNKLDAENAIVHM 63
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
241-309 6.27e-06

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 44.47  E-value: 6.27e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12565   3 IIVKNLPKYVTEKRLKEHFS--KKGEITDVKvmrtkdgKSRRFGFIGFKSEEEAQKAVKYFNKTFIDTSKISVEFA 76
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
63-137 6.35e-06

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 44.28  E-value: 6.35e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd21606   1 GYEVFIANLPYSINWQALKDMFKECGDVLRADVELDYNGRSRGFGTVIYATEEEMHRAIDTFNGYEL-EGRVLEV 74
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
65-131 6.77e-06

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 44.03  E-value: 6.77e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngnnRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12606   2 KLFIGNLPREATEEEIRSLFEQYGKVTECDII-------KNYGFVHMEDKSAADEAIRNLHHYKLHG 61
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
66-138 7.06e-06

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 44.51  E-value: 7.06e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQ----LNNYEIR-NGRLLGVC 138
Cdd:cd12415   3 VFIRNLSFDTTEEDLKEFFSKFGEVKYARIVLDkDTGHSKGTAFVQFKTKESADKCIEAandeSEDGGLVlDGRKLIVS 81
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
241-306 7.14e-06

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 44.15  E-value: 7.14e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDY--------AFVHFSNREDAVEAMKALNGK-VLDG--SPIEV 306
Cdd:cd12361   2 LFVGMIPKTASEEDVRPLFEQF--GNIEEVQILRDKqtgqskgcAFVTFSTREEALRAIEALHNKkTMPGcsSPLQV 76
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
66-126 7.18e-06

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 43.84  E-value: 7.18e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12243   3 VYIRGLPPNTTDEDLLLLCQSFGKIISTKAIIDKQTNKcKGYGFVDFDSPEAALKAIEGLNG 64
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
240-307 7.51e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 44.09  E-value: 7.51e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 240 ILYVRNLMLSTSEEMIEKEFN--NIKPGAVERVKKIRD----YAFVHFSNREDAVEAMKaLNGKVLDGSPIEVT 307
Cdd:cd12254   1 VVRLRGLPFSATEEDIRDFFSglDIPPDGIHIVYDDDGrptgEAYVEFASEEDAQRALR-RHKGKMGGRYIEVF 73
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
241-306 7.52e-06

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 44.19  E-value: 7.52e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12383   9 IFCGDLGNEVTDEVLARAFS--KYPSFQKAKVIRDkrtgkskgYGFVSFKDPNDYLKALREMNGKYVGNRPIKL 80
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
239-304 8.51e-06

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 43.71  E-value: 8.51e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 239 KILYVRNLMLSTSEEMIEKEF----------NNIKPgavervkkiRDYAFVHFSNREDAVEAMKALNGKVLDGSPI 304
Cdd:cd12405   2 KTLVVNNLSYSATEESLQSVFekatsiripqNNGRP---------KGYAFVEFESVEDAKEALESCNNTEIEGRSI 68
RRM1_hnRNPM cd12657
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein M ...
66-137 1.03e-05

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M); This subgroup corresponds to the RRM1 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif).


Pssm-ID: 410058 [Multi-domain]  Cd Length: 76  Bit Score: 43.73  E-value: 1.03e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLC-EKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12657   2 VFISNIPFDVKWQTLKDLVkEKVGEVTYVELLMDAEGKSRGCAVVEFKTEESMKKAVEVLNKHSF-NGRPLKV 73
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
241-301 1.05e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 43.92  E-value: 1.05e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERV--------KKIRDYAFVHFSNREDAVEAMKALNGKVLDG 301
Cdd:cd12567   5 LFVRNLPYTCTEEDLEKLFS--KYGPLSEVhfpidsltKKPKGFAFVTYMIPEHAVKAYAELDGTVFQG 71
RRM2_RBM4 cd12607
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
241-306 1.05e-05

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM2 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410019 [Multi-domain]  Cd Length: 67  Bit Score: 43.41  E-value: 1.05e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12607   3 LHVGNISSSCTNQELRAKFEEY--GPVIECDIVKDYAFVHMERAEDAMEAIRGLDNTEFQGKRMHV 66
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
241-310 1.24e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 43.44  E-value: 1.24e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKI-----------RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12355   2 LWIGNLDPRLTEYHLLKLLS--KYGKIKKFDFLfhktgplkgqpRGYCFVTFETKEEAEKAIECLNGKLALGKKLVVRWA 79

                .
gi 20357578 310 K 310
Cdd:cd12355  80 H 80
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
241-306 1.27e-05

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 43.55  E-value: 1.27e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVK--------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12448   1 LFVGNLPFSATQDALYEAFSQH--GSIVSVRlptdretgQPKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRL 72
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
60-134 1.31e-05

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 43.69  E-value: 1.31e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  60 PErGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12639   2 PE-GCNLFIYHLPQEFGDAELMQMFLPFGNVISAKVFVDRATNqSKCFGFVSFDNPASAQAAIQAMNGFQIGMKRL 76
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
272-311 1.35e-05

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 43.77  E-value: 1.35e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|
gi 20357578 272 KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12390  41 VPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIRVSFGNP 80
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
239-306 1.40e-05

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 43.86  E-value: 1.40e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12237   5 LTLFVGRLSLQTTEEKLKEVFS--RYGDIRRLRLVRDivtgfskrYAFIEYKEERDALHAYRDAKKLVIDQYEIFV 78
DSRM_DND1 cd20313
double-stranded RNA binding motif of dead end protein homolog 1 (DND1) and similar proteins; ...
447-523 1.43e-05

double-stranded RNA binding motif of dead end protein homolog 1 (DND1) and similar proteins; DND1 (also known as dead end protein, or RNA-binding motif single-stranded-interacting protein 4 (RBMS4)) is an RNA-binding protein that is required for the survival of primordial germ cells (PGCs) and suppresses the formation of germ-cell tumors. DND1 binds a UU(A/U) trinucleotide motif predominantly in the 3' untranslated regions of mRNA, and destabilizes target mRNAs. It also counteracts the function of several microRNAs (miRNAs), which are inhibitors of gene expression, by binding mRNAs and prohibiting miRNAs from associating with their target sites. DND1 contains two RNA recognition motifs (RRMs) and a C-terminal double-stranded RNA binding motif (DSRM) that is not sequence specific, but highly specific for dsRNAs of various origin and structure.


Pssm-ID: 380745  Cd Length: 80  Bit Score: 43.43  E-value: 1.43e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 447 APQILEEICQKNNWGQPVYQLH-SAIGQDQRQLFLYKITIPALasqnPAihPFTP-----PKLSAF--VDEAKTYAAEYT 518
Cdd:cd20313   2 AVALLNKLCQKLRLGSPVYLTKlLGAGPDGFLRFWFKVVIPGL----PL--PFTGfvwvlPGPLARagHEEAKQAAAQQV 75

                ....*
gi 20357578 519 LQTLG 523
Cdd:cd20313  76 LQALG 80
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
65-125 1.48e-05

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 43.25  E-value: 1.48e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12619   3 NIFVGDLSPEVTDAALFNAFSDFPSCSDARVMWDQkTGRSRGYGFVSFRSQQDAQNAINSMN 64
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
241-308 1.60e-05

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 42.99  E-value: 1.60e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEK---EFNNIKPGAV--ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12680   3 LLVSNLDFGVSDADIKElfaEFGTLKKAAVhyDRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQL 75
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
66-137 1.65e-05

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 43.32  E-value: 1.65e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12552   2 IYVSHLPHGFHEKELKKYFAQFGDLKNVRLARSKkTGNSKHYGFLEFVNPEDAMIAQKSMNNYLL-MGKLLQV 73
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
66-128 1.69e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 43.36  E-value: 1.69e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYE 128
Cdd:cd12773   3 LYISGLPRTMTQKDVEDMFSRFGRIINSRVLVDqATGLSRGVAFIRFDKRSEAEEAITNFNGHK 66
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
241-307 1.80e-05

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 43.04  E-value: 1.80e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12393   4 VYVSNLPFSLTNNDLHQIFS--KYGKVVKVTILKDketrkskgVAFVLFLDRESAHNAVRAMNNKELFGRTLKCS 76
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
146-224 2.02e-05

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 42.81  E-value: 2.02e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 146 LFVGGIpKTKKREEILSEMKKVTEGVVDVIVYPSaaDKTKNRGFAFVEYESHRAAAMARRKlLPGRiQLWGHGIAVDWA 224
Cdd:cd12614   1 LYVGNL-DPRVTEDLLQEIFAVTGPVENCKIIPD--KNSKGVNYGFVEYYDRRSAEIAIQT-LNGR-QIFGQEIKVNWA 74
RRM3_Bruno_like cd12640
RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar ...
60-134 2.12e-05

RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM3 of Bruno protein, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 241084 [Multi-domain]  Cd Length: 79  Bit Score: 43.06  E-value: 2.12e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  60 PErGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12640   2 PE-GCNLFIYHLPQEFTDTDLAQTFLPFGNVISAKVFIDKQTNlSKCFGFVSYDNPDSAQAAIQAMNGFQIGTKRL 76
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
242-309 2.15e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 42.98  E-value: 2.15e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIKPGAVERVK-----KIRDYAFVHFSNREDAVEAMkALNGKVLDGSPIEVTLA 309
Cdd:cd12402   6 YLGNLPYDVTEDDIEDFFRGLNISSVRLPRengpgRLRGFGYVEFEDRESLIQAL-SLNEESLKNRRIRVDVA 77
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
238-309 2.17e-05

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 42.48  E-value: 2.17e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 238 VKIlYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12608   1 MKI-FVGNVDEDTSQEELSALFEPY--GAVLSCAVMKQFAFVHMRGEAAADRAIRELNGRELHGRALVVEES 69
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
239-311 2.37e-05

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 42.98  E-value: 2.37e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNnikpGAVE-RVKKIRD------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFE----GAISaRIATDRDtgsskgFGFVDFSSEEDAKAAKEAMEDGEIDGNKVTLDFAKP 76
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
242-304 2.37e-05

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 42.65  E-value: 2.37e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--YAFVHFSNREDAVEAMKALNGKVLDGSPI 304
Cdd:cd12354   4 YVGNITKGLTEALLQQTFSPF--GQILEVRVFPDkgYAFIRFDSHEAATHAIVSVNGTIINGQAV 66
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
66-125 2.57e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 42.68  E-value: 2.57e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12776   4 LYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDqVTGVSRGVGFIRFDKRIEAEEAIKGLN 64
RRM1_CELF1_2_Bruno cd12631
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, ...
65-132 2.68e-05

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM1 of CELF-1, CELF-2 and Bruno protein. CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR) belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in regulation of pre-mRNA splicing, and control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. The human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. This subgroup also includes Drosophila melanogaster Bruno protein, which plays a central role in regulation of Oskar (Osk) expression in flies. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410040 [Multi-domain]  Cd Length: 84  Bit Score: 42.88  E-value: 2.68e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN---NRGYAFVTFSNKVEAKNAIKQLNNYEIRNG 132
Cdd:cd12631   3 KMFVGQIPRSWSEKELRELFEQYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHNIKTLPG 73
RRM1_RBMS3 cd12472
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, ...
66-124 2.79e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3); This subgroup corresponds to the RRM1 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines.


Pssm-ID: 409902 [Multi-domain]  Cd Length: 80  Bit Score: 42.88  E-value: 2.79e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQL 124
Cdd:cd12472   7 LYIRGLPPGTTDQDLIKLCQPYGKIVSTKAILDKNTNQcKGYGFVDFDSPAAAQKAVASL 66
RRM1_MSSP1 cd12470
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
54-125 2.82e-05

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM1 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409900 [Multi-domain]  Cd Length: 86  Bit Score: 42.85  E-value: 2.82e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  54 GWDaapPERGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLN 125
Cdd:cd12470   1 GWD---QLSKTNLYIRGLPPNTTDQDLVKLCQPYGKIVSTKAILDKTTNKcKGYGFVDFDSPAAAQKAVSALK 70
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
66-133 2.84e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 42.36  E-value: 2.84e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNnyEIRNGR 133
Cdd:cd12384   3 IFVGGLPYHTTDDSLREYFEQFGEIEEAVVITDRQtGKSRGYGFVTMADREAAERACKDPN--PIIDGR 69
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
241-304 2.98e-05

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 42.62  E-value: 2.98e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVkkIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPI 304
Cdd:cd12378   2 LYVGDLHPDVTEAMLYEKFSPAGPVLSIRV--CRDavtrrslgYAYVNFQQPADAERALDTLNFDVIKGKPI 71
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
241-306 3.29e-05

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 42.55  E-value: 3.29e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12380   4 VYVKNFGEDVDDDELKELFE--KYGKITSAKVMKDdsgkskgFGFVNFENHEAAQKAVEELNGKELNGKKLYV 74
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
66-135 3.45e-05

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 42.61  E-value: 3.45e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12236   4 LFVARLSYDTTESKLRREFEKYGPIKRVRLVRDKkTGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRVL 74
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
66-133 3.54e-05

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 42.31  E-value: 3.54e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKvEAKNAIKQLNNYEIrNGR 133
Cdd:cd12330   2 IFVGGLAPDVTEEEFKEYFEQFGTVVDAVVMLDHDtGRSRGFGFVTFDSE-SAVEKVLSKGFHEL-GGK 68
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
66-137 3.66e-05

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 42.04  E-value: 3.66e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMM-MDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12397   1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRMAtFEDSGKCKGFAFVDFKEIESATNAVKGPINHSL-NGRDLRV 72
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
66-131 4.13e-05

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 42.00  E-value: 4.13e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngNNRGYAFVTFSNkveAKNAIKQLNNYEIRN 131
Cdd:cd12262   6 VYVGNLDDSLTEEEIRGILEKYGEIESIKIL-----KEKNCAFVNYLN---IANAIKAVQELPIKN 63
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
66-127 4.36e-05

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 42.08  E-value: 4.36e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd12672   8 VFVGGIDIRMDENEIRSFFARYGSVKEVKIITDRTGVSKGYGFVSFYDDVDIQKIVESQINF 69
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
62-127 4.37e-05

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 41.93  E-value: 4.37e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd21607   1 RNNTIYCSNLPLSTAESDLYDLFETIGKVNNAELKYDETGDPTGSAVVEYENLDDADVCISKLNNY 66
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
241-307 4.81e-05

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 41.87  E-value: 4.81e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAV--------ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12311   1 LKVDNLTYRTTPDDLRRVFE--KYGEVgdvyiprdRYTRESRGFAFVRFYDKRDAEDAIDAMDGAELDGRELRVQ 73
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
241-311 4.96e-05

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 41.95  E-value: 4.96e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12769   5 LIVNYLPQNMTQDELRSLFSSI--GEVESAKLIRDkvaghslgYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSYARP 81
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
66-130 5.30e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 41.71  E-value: 5.30e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIK----QLNNYEIR 130
Cdd:cd12395   2 VFVGNLPFDIEEEELRKHFEDCGDVEAVRIVRDrETGIGKGFGYVLFKDKDSVDLALKlngsKLRGRKLR 71
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
242-307 5.71e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 41.52  E-value: 5.71e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNrEDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12306   3 YVGNVDYGTTPEELQAHFKSC--GTINRVTILCDkftgqpkgFAYIEFVD-KSSVENALLLNESEFRGRQIKVT 73
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
29-141 5.99e-05

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 46.04  E-value: 5.99e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578    29 ALQSIILQTLLEKENGQRKYGgPPPGWDAAP---------------------PERGCEIFIGKLPRDLFEDELIPLCEKI 87
Cdd:TIGR01642 241 ALDSIIYSNVFLKIRRPHDYI-PVPQITPEVsqknpddnaknveklvnsttvLDSKDRIYIGNLPLYLGEDQIKELLESF 319
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 20357578    88 GKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVCASV 141
Cdd:TIGR01642 320 GDLKAFNLIKDIAtGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHVQRACV 374
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
65-135 6.06e-05

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 41.73  E-value: 6.06e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12570   2 KILVKNLPFEATKKDVRTLFSSYGQLKSVRVPKKFDQSARGFAFVEFSTAKEALNAMNALKDTHLLGRRLV 72
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
64-153 6.68e-05

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 41.93  E-value: 6.68e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLgvcASVD 142
Cdd:cd12237   5 LTLFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDIvTGFSKRYAFIEYKEERDALHAYRDAKKLVIDQYEIF---VDFE 81
                        90
                ....*....|.
gi 20357578 143 NCRLFVGGIPK 153
Cdd:cd12237  82 CERTLPGWIPR 92
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
63-131 6.78e-05

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 41.56  E-value: 6.78e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  63 GCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12769   2 RTNLIVNYLPQNMTQDELRSLFSSIGEVESAKLIRDkVAGHSLGYGFVNYVTAKDAERAINTLNGLRLQS 71
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
241-311 6.91e-05

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 45.32  E-value: 6.91e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578   241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSI--GEIESCKLVRDkvtgqslgYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYARP 82
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
66-149 7.10e-05

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 41.41  E-value: 7.10e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLnnyeirNGRLLgvcasvDNCR 145
Cdd:cd12379   5 IFIKNLDKSIDNKALYDTFSAFGNILSCKVATDENGGSKGYGFVHFETEEAAERAIEKV------NGMLL------NGKK 72

                ....
gi 20357578 146 LFVG 149
Cdd:cd12379  73 VFVG 76
RRM2_TDP43 cd12322
RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
64-119 7.14e-05

RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409761 [Multi-domain]  Cd Length: 71  Bit Score: 41.15  E-value: 7.14e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFngnnRGYAFVTFSNKVEAKN 119
Cdd:cd12322   1 RKVFVGRCTEDMTEDDLRQYFSQFGEVTDVFIPKPF----RAFAFVTFADDEVAQS 52
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
62-126 7.62e-05

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 45.01  E-value: 7.62e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578    62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:TIGR01659 192 KDTNLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDkLTGTPRGVAFVRFNKREEAQEAISALNN 257
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
66-130 7.91e-05

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 41.46  E-value: 7.91e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  66 IFIGKLPRDlFED--ELIPLCEKIGKIYEMRMMMDfNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIR 130
Cdd:cd12390   5 LFVDRLPKD-FRDgsELRKLFSQVGKPTFCQLAMG-NGVPRGFAFVEFASAEDAEEAQQLLNGHDLQ 69
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
241-325 8.40e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 45.57  E-value: 8.40e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   241 LYVRNLMLSTSEEMIEKEFNNIKPgaVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKpv 312
Cdd:TIGR01628   3 LYVGDLDPDVTEAKLYDLFKPFGP--VLSVRVCRDsvtrrslgYGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQ-- 78
                          90
                  ....*....|...
gi 20357578   313 dKDSYVRYTrGTG 325
Cdd:TIGR01628  79 -RDPSLRRS-GVG 89
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
66-113 8.73e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 40.88  E-value: 8.73e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSN 113
Cdd:cd12323   2 IFVGGLSANTTEDDVKKYFSQFGKVEDAMLMFDKQTNrHRGFGFVTFES 50
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
66-134 8.80e-05

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 40.81  E-value: 8.80e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMrmmmDFNGNNRG--YAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12338   2 IYVGNLPGDIRERDIEDLFYKYGPILAI----DLKNRRRGppFAFVEFEDPRDAEDAIRGRDGYDFDGYRL 68
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
66-137 9.86e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 40.79  E-value: 9.86e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNyEIRNGRLLGV 137
Cdd:cd12316   2 LFVRNLPFTATEDELRELFEAFGKISEVHIPLDkQTKRSKGFAFVLFVIPEDAVKAYQELDG-SIFQGRLLHV 73
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
66-134 1.03e-04

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 41.01  E-value: 1.03e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12565   3 IIVKNLPKYVTEKRLKEHFSKKGEITDVKVMRTKDGKSRRFGFIGFKSEEEAQKAVKYFNKTFIDTSKI 71
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
66-134 1.07e-04

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 40.89  E-value: 1.07e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMmmDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12599   2 VYVGNLPMDIREREVEDLFSKYGPVVSIDL--KIPPRPPAYAFVEFEDARDAEDAIRGRDGYDFDGHRL 68
RRM1_SRSF9 cd12598
RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 9 ...
66-134 1.08e-04

RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 9 (SRSF9); This subgroup corresponds to the RRM1 of SRSF9, also termed pre-mRNA-splicing factor SRp30C. SRSF9 is an essential splicing regulatory serine/arginine (SR) protein that has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. SRSF9 can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. SRSF9 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by an unusually short C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 241042 [Multi-domain]  Cd Length: 72  Bit Score: 40.55  E-value: 1.08e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngNNRG---YAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12598   2 IYVGNLPSDVREKDLEDLFYKYGRIRDIELK-----NRRGlvpFAFVRFEDPRDAEDAVFGRNGYDFGQCRL 68
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
66-133 1.14e-04

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 40.74  E-value: 1.14e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMdFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGR 133
Cdd:cd21605   4 IFVGNLPFDCTWEDLKDHFSQVGEVIRADIVT-SRGRHRGMGTVEFTNKEDVDRAISKFDHTMF-MGR 69
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
241-310 1.19e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 40.82  E-value: 1.19e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERV--------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12312   3 LFVRNVADDTRPDDLRREFG--RYGPIVDVyipldfytRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQFAQ 78
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
71-126 1.19e-04

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 41.43  E-value: 1.19e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  71 LPRDLFEDELIPLCEKI---------GKIYEMRMMMDFN-------GNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12416   8 LPKSVDDKKLKKLFLKAvkerakkkgVKIKEVKVMRDKKrlnsdgkGRSKGYGFVEFTEHEHALKALRALNN 79
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
241-306 1.21e-04

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 40.66  E-value: 1.21e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFnnIKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12334   1 VYVGNLDEKVTEELLWELF--IQAGPVVNVHMPKDrvtqqhqgYGFVEFLSEEDADYAIKIMNMIKLYGKPIRV 72
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
66-138 1.29e-04

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 40.35  E-value: 1.29e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMrMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGVC 138
Cdd:cd21603   3 IFVKNLPLDTNNDEILDFFSKVGPIKSV-FTSPKYKYNSLWAFVTYKKGSDTEKAIKLLNGTLFK-GRTIEVT 73
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
241-309 1.34e-04

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 40.69  E-value: 1.34e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGS--PIEVTLA 309
Cdd:cd12376   3 LYVSGLPKTMTQKELEQLFS--QYGRIITSRILRDqltgvsrgVGFIRFDKRIEAEEAIKGLNGQKPEGAsePITVKFA 79
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
241-309 1.39e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 40.47  E-value: 1.39e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12650   3 LIVNYLPQNMTQDEIRSLFSSI--GEIESCKLIRDkvtgqslgYGFVNYVDPSDAEKAINTLNGLRLQNKTIKVSYA 77
RRM3_HuR cd12653
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup ...
66-129 1.43e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM3 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410056 [Multi-domain]  Cd Length: 85  Bit Score: 40.81  E-value: 1.43e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12653   5 IFIYNLGQDADEGILWQMFGPFGAVTNVKVIRDFNTNKcKGFGFVTMTNYEEAAMAIASLNGYRL 69
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
274-309 1.65e-04

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 40.56  E-value: 1.65e-04
                        10        20        30
                ....*....|....*....|....*....|....*.
gi 20357578 274 RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12619  43 RGYGFVSFRSQQDAQNAINSMNGKWLGSRPIRCNWA 78
RRM3_U2AF65 cd12232
RNA recognition motif 3 (RRM3) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
247-307 1.67e-04

RNA recognition motif 3 (RRM3) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM3 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409679 [Multi-domain]  Cd Length: 89  Bit Score: 40.65  E-value: 1.67e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 247 MLSTSEEMIEKEFNNI---------KPGAVERVKKIRDYA-----------FVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12232   9 MVTPEELEDDEEYEEIledvkeecsKYGKVLSVVIPRPEAegvdvpgvgkvFVEFEDVEDAQKAQKALAGRKFDGRTVVA 88

                .
gi 20357578 307 T 307
Cdd:cd12232  89 S 89
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
145-226 1.73e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 40.39  E-value: 1.73e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 145 RLFVGGIPKTKKREEiLSEMKKVTEGVVDVIVYPSAADKTKnrGFAFVEYESHRAAAMARRKLlpGRIQLWGHGIAVDWA 224
Cdd:cd12392   4 KLFVKGLPFSCTKEE-LEELFKQHGTVKDVRLVTYRNGKPK--GLAYVEYENEADASQAVLKT--DGTEIKDHTISVAIS 78

                ..
gi 20357578 225 EP 226
Cdd:cd12392  79 NP 80
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
239-309 1.73e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 40.19  E-value: 1.73e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIkpGAVERVK--------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12398   1 RSVFVGNIPYDATEEQLKEIFSEV--GPVVSFRlvtdretgKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM2_SECp43 cd12612
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
66-126 1.76e-04

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410024 [Multi-domain]  Cd Length: 82  Bit Score: 40.43  E-value: 1.76e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  66 IFIGKLPRDLFEDEL-------IPLCeKIGKIyemrmMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12612   4 LFVGDLTPEVDDGMLyefflkrYPSC-KGAKV-----VLDQLGNSRGYGFVRFSDENEQKRALTECQG 65
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
66-137 1.76e-04

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 40.20  E-value: 1.76e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12399   1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDReTKRPRGFGFVELQEEESAEKAIAKLDGTDF-MGRTIRV 72
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
66-130 1.80e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 40.49  E-value: 1.80e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIR 130
Cdd:cd12772   7 LIVNYLPQNMTQEEFKSLFGSIGDIESCKLVRDkITGQSLGYGFVNYVDPNDADKAINTLNGLKLQ 72
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
241-310 1.90e-04

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 40.21  E-value: 1.90e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLmlstsEEMIEKE------------FNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12246   2 LYINNL-----NEKIKKDelkrslyalfsqFGPVLDIVASKSLKMRGQAFVVFKDVESATNALRALQGFPFYGKPMRIQY 76

                ..
gi 20357578 309 AK 310
Cdd:cd12246  77 AK 78
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
148-207 1.91e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 40.25  E-value: 1.91e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 148 VGGIPK--TKKREE----ILSEMKKVTEGVVDVIVYPSAADKtKNRGFAFVEYESHRAAAMARRKL 207
Cdd:cd12278   6 VDGLPVvgEEKLEKlkkvLTKIFSKFGSGKIVGIYMPVDETG-KTKGFAFVEYATPEEAKKAVKAL 70
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
241-311 2.01e-04

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 40.06  E-value: 2.01e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDY--------AFVHFSNREDAVEAMKALNGKV-LDGS--PIEVTLA 309
Cdd:cd12637   2 LFVGSLPKTATEQEVRDLFEAY--GEVEEVYLMKDPvtqqgtgcAFVKFAYKEEALAAIRSLNGTVtFDGCsrPVEVRFA 79

                ..
gi 20357578 310 KP 311
Cdd:cd12637  80 ES 81
RRM3_HuD cd12656
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup ...
66-129 2.11e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241100 [Multi-domain]  Cd Length: 86  Bit Score: 40.46  E-value: 2.11e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12656   6 IFVYNLSPDSDESVLWQLFGPFGAVNNVKVIRDFNTNKcKGFGFVTMTNYDEAAMAIASLNGYRL 70
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
66-134 2.17e-04

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 39.99  E-value: 2.17e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIyEMRMMM--DFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12389   2 LCVTNLPLSFTEEQFEELVRPYGNV-ERCFLVysEVTGESKGYGFVEYTSKESAIRAKNQLHGRQIGGRAL 71
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
64-137 2.18e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 39.97  E-value: 2.18e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMrmmmdFNGNNRGYAFVTFSNKVEAKNAIKQLNNyEIRNGRLLGV 137
Cdd:cd12332   2 CRLFVGNLPNDITEEEFKELFQKYGEVSEV-----FLNKGKGFGFIRLDTRANAEAAKAELDG-TPRKGRQLRV 69
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
77-137 2.27e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 39.94  E-value: 2.27e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  77 EDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12311  12 PDDLRRVFEKYGEVGDVYIPRDrYTRESRGFAFVRFYDKRDAEDAIDAMDGAEL-DGRELRV 72
RRM3_CELF1_2 cd12638
RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
58-134 2.31e-04

RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM3 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It specifically binds to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contain three highly conserved RRMs. It binds to RNA via the first two RRMs, which are important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 241082 [Multi-domain]  Cd Length: 92  Bit Score: 40.43  E-value: 2.31e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  58 APPErGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12638   3 EGPE-GANLFIYHLPQEFGDQDILQMFMPFGNVVSAKVFIDKQTNlSKCFGFVSYDNPVSAQAAIQAMNGFQIGMKRL 79
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
241-309 2.32e-04

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 39.94  E-value: 2.32e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPgAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12345   4 LFVGDLAPDVTDYQLYETFSARYP-SVRGAKVVMDpvtgrskgYGFVRFGDESEQDRALTEMQGVYLGSRPIRVSPA 79
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
65-137 2.42e-04

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 39.79  E-value: 2.42e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngnnRGYAFVTFSNKVEAKNAIKQLNNYEiRNGRLLGV 137
Cdd:cd12608   2 KIFVGNVDEDTSQEELSALFEPYGAVLSCAVM-------KQFAFVHMRGEAAADRAIRELNGRE-LHGRALVV 66
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
241-309 2.43e-04

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 39.90  E-value: 2.43e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFnnIKPGAVERV--------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12347   1 LYVGGLAEEVDEKVLHAAF--IPFGDIVDIqipldyetEKHRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRVNLA 75
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
64-126 2.44e-04

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 39.98  E-value: 2.44e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12336   2 RTLFVGNLDPRVTEEILYELFLQAGPLEGVKIPKDPNGKPKNFAFVTFKHEVSVPYAIQLLNG 64
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
251-310 2.53e-04

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 39.61  E-value: 2.53e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 251 SEEMIEKEFNNIkpGAVERV--KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12305  15 TEDVLKKAFSPF--GNIINIsmEIEKNCAFVTFEKMESADQAIAELNGTTVEGVQLKVSIAR 74
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
66-137 2.53e-04

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 39.55  E-value: 2.53e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMrmmmdFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGV 137
Cdd:cd12588   4 LFVGNLPPDITEEEMRKLFEKYGKAGEV-----FIHKDKGFGFIRLETRTLAEIAKVELDNMPLR-GKQLRV 69
RRM2_hnRNPM_like cd12386
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
88-126 2.65e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409820 [Multi-domain]  Cd Length: 74  Bit Score: 39.65  E-value: 2.65e-04
                        10        20        30
                ....*....|....*....|....*....|....*....
gi 20357578  88 GKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12386  23 GKVVRADIREDKDGKSRGMGVVQFEHPIEAVQAISMFNG 61
RRM_LARP4_5_like cd12430
RNA recognition motif (RRM) found in La-related protein 4 (LARP4), La-related protein 5 (LARP5 ...
239-304 2.68e-04

RNA recognition motif (RRM) found in La-related protein 4 (LARP4), La-related protein 5 (LARP5 or LARP4B) and similar proteins; This subfamily corresponds to the RRM of LARP4 and LARP5. LARP4 is a cytoplasmic factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). It may play a role in promoting translation by stabilizing mRNA. LARP5 is a cytosolic protein that co-sediments with polysomes and accumulates upon stress induction in cellular stress granules. It can interact with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. LARP5 may function as a stimulatory factor of translation through bridging mRNA factors of the 3' end with initiating ribosomes. Both, LARP4 and LARP5, are structurally related to the La autoantigen. Like other La-related proteins (LARPs) family members, LARP4 and LARP5 contain a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409864 [Multi-domain]  Cd Length: 76  Bit Score: 39.61  E-value: 2.68e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIKPGAVERVK-KIRDYAFVHFSNREDAVEAMKALNGKV--LDGSPI 304
Cdd:cd12430   1 CIVILREIPESTPEEEVEALFSGQNCPKFTSCEfAINDSWYVTFESEEDAQEAYKYLREEVktFNGKPI 69
RRM2_SHARP cd12349
RNA recognition motif 2 (RRM2) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
243-307 2.72e-04

RNA recognition motif 2 (RRM2) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM2 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409785 [Multi-domain]  Cd Length: 74  Bit Score: 39.70  E-value: 2.72e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 243 VRNLMLSTSEEMIEK----EFNniKPGAVERVKKI----RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12349   4 VRNLPVRSSDTSLKDglfhEFK--KHGKVTSVKVHgqgeERYAIVFFRRPEDAEKALEVSKGKLFFGMQIEVT 74
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
255-300 2.83e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 39.87  E-value: 2.83e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20357578 255 IEKEFNNIKPGAVERV-------KKIRDYAFVHFSNREDAVEAMKALNGKVLD 300
Cdd:cd12278  24 LTKIFSKFGSGKIVGIympvdetGKTKGFAFVEYATPEEAKKAVKALNGYKLD 76
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
276-309 3.05e-04

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 39.69  E-value: 3.05e-04
                        10        20        30
                ....*....|....*....|....*....|....
gi 20357578 276 YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12407  42 FGFVTFANSADADRAREKLNGTVVEGRKIEVNNA 75
RRM3_HuB cd12654
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup ...
66-129 3.08e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241098 [Multi-domain]  Cd Length: 86  Bit Score: 40.08  E-value: 3.08e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12654   6 IFVYNLAPDADESILWQMFGPFGAVTNVKVIRDFNTNKcKGFGFVTMTNYDEAAMAIASLNGYRL 70
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
145-224 3.08e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 39.59  E-value: 3.08e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 145 RLFVGGIPKTKKREEILSEMKKVTEGV-VDVIVYPSAADKTKNRGFAFVEYESHRAAAMARRKlLPGRIQLwGHGIAVDW 223
Cdd:cd12355   1 RLWIGNLDPRLTEYHLLKLLSKYGKIKkFDFLFHKTGPLKGQPRGYCFVTFETKEEAEKAIEC-LNGKLAL-GKKLVVRW 78

                .
gi 20357578 224 A 224
Cdd:cd12355  79 A 79
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
71-131 3.08e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 39.69  E-value: 3.08e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  71 LPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12650   8 LPQNMTQDEIRSLFSSIGEIESCKLIRDkVTGQSLGYGFVNYVDPSDAEKAINTLNGLRLQN 69
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
239-313 3.14e-04

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 39.57  E-value: 3.14e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIKPgaverVKKI------RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKPV 312
Cdd:cd12524   2 RTLFVRNINSSVEDEELRALFEQFGE-----IRTLytackhRGFIMVSYYDIRAAQSAKRALQGTELGGRKLDIHFSIPK 76

                .
gi 20357578 313 D 313
Cdd:cd12524  77 D 77
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
66-148 3.18e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 39.80  E-value: 3.18e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD---FNGNNRG---YAFVTFSNKVEAKNAIKQLNnyeirngrllgvCA 139
Cdd:cd21620   4 LYVGNLPQTCQSEDLIILFEPYGNVCGAHIASRkkvKVSWVKPsklFAFVEFETKEAATTAIVLLN------------GI 71

                ....*....
gi 20357578 140 SVDNCRLFV 148
Cdd:cd21620  72 TYMGCQLKV 80
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
242-306 3.30e-04

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 39.13  E-value: 3.30e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD-------YAFVHFSNREDAVEAMKaLNGKVLDGSPIEV 306
Cdd:cd12391   3 FVSNLDYSVPEDKIREIFSGC--GEITDVRLVKNykgkskgYCYVEFKDEESAQKALK-LDRQPVEGRPMFV 71
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
252-311 3.36e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 39.72  E-value: 3.36e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 252 EEMIEKEFNNI--KPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12772  14 QNMTQEEFKSLfgSIGDIESCKLVRDkitgqslgYGFVNYVDPNDADKAINTLNGLKLQTKTIKVSYARP 83
RRM_ACINU cd12432
RNA recognition motif (RRM) found in apoptotic chromatin condensation inducer in the nucleus ...
239-298 3.39e-04

RNA recognition motif (RRM) found in apoptotic chromatin condensation inducer in the nucleus (acinus) and similar proteins; This subfamily corresponds to the RRM of Acinus, a caspase-3-activated nuclear factor that induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. It is essential for apoptotic chromatin condensation and may also participate in nuclear structural changes occurring in normal cells. Acinus contains a P-loop motif and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which indicates Acinus might have ATPase and DNA/RNA-binding activity.


Pssm-ID: 409866 [Multi-domain]  Cd Length: 90  Bit Score: 39.88  E-value: 3.39e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 239 KILYVRNLM----LSTSEEMIEKefnnIKPGAVERV--KKIRDYAFVHFSNREDAVEAMKALNGKV 298
Cdd:cd12432   2 RILHIDNLVrpftLGQLKELLSE----TGTGVIEGFwmDKIKSHCYVTYSSEEEAVATREALHGVV 63
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
241-304 3.45e-04

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 39.60  E-value: 3.45e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPgAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPI 304
Cdd:cd12344   2 LWMGDLEPWMDEAYISSCFAKTGE-EVVSVKIIRNkqtgksagYCFVEFATQEAAEQALEHLNGKPIPNTQQ 72
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
241-302 3.46e-04

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 39.21  E-value: 3.46e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGS 302
Cdd:cd12243   3 VYIRGLPPNTTDEDLLLLCQ--SFGKIISTKAIIDkqtnkckgYGFVDFDSPEAALKAIEGLNGRGVQAS 70
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
240-309 3.48e-04

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 39.90  E-value: 3.48e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 240 ILYVRNLMLSTSEEMIEK---EFNNIKPGAV---ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12324   8 IIFVTGVHEEAQEEDIHDkfaEFGEIKNLHLnldRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDWA 83
RRM_FET cd12280
RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily ...
66-130 3.57e-04

RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15.


Pssm-ID: 409722 [Multi-domain]  Cd Length: 82  Bit Score: 39.70  E-value: 3.57e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKI--------YEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIR 130
Cdd:cd12280   1 IFVSGLPPDVTIDELADLFGQIGIIkrykdtwpPKIKIYTDKEtGKPKGEATLTYEDPSAAKAAIEWFNGKEFR 74
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
71-134 3.82e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 39.16  E-value: 3.82e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  71 LPRDLFEDELIPLCEKIGkIYEMRMMMDfNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12238   7 LPPELSEDDKEDLLKHFG-ATSVRVMKR-RGKLKHTAFATFDNEQAASKALSRLHQLKILGKRL 68
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
241-322 4.65e-04

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 38.92  E-value: 4.65e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRDY--AFVHFSNREDAVEAMKALNGKvldgspievtlaKPVDKDSYV 318
Cdd:cd12262   6 VYVGNLDDSLTEEEIRGILE--KYGEIESIKILKEKncAFVNYLNIANAIKAVQELPIK------------NPKFKKVRI 71

                ....
gi 20357578 319 RYTR 322
Cdd:cd12262  72 NYGK 75
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
145-207 4.74e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 39.31  E-value: 4.74e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 145 RLFVGGIPKTKKREEI---LSEMKKVTEgvVDVIVypsaaDKT--KNRGFAFVEYESHRAAAMARRKL 207
Cdd:COG0724   3 KIYVGNLPYSVTEEDLrelFSEYGEVTS--VKLIT-----DREtgRSRGFGFVEMPDDEEAQAAIEAL 63
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
274-306 4.95e-04

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 39.09  E-value: 4.95e-04
                        10        20        30
                ....*....|....*....|....*....|...
gi 20357578 274 RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12379  43 KGYGFVHFETEEAAERAIEKVNGMLLNGKKVFV 75
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
66-113 5.43e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 38.79  E-value: 5.43e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSN 113
Cdd:cd12328   2 LFVGGLKEDVEEEDLREYFSQFGKVESVEIVTDKeTGKKRGFAFVTFDD 50
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
241-311 5.67e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 38.85  E-value: 5.67e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12392   5 LFVKGLPFSCTKEELEELFK--QHGTVKDVRlvtyrngKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISVAISNP 80
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
144-207 5.82e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 38.43  E-value: 5.82e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 144 CRLFVGGIPKTKKREEILSEMKKVTEgVVDVIVypsaadkTKNRGFAFVEYESHRAAAMARRKL 207
Cdd:cd12332   2 CRLFVGNLPNDITEEEFKELFQKYGE-VSEVFL-------NKGKGFGFIRLDTRANAEAAKAEL 57
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
66-123 5.86e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 38.74  E-value: 5.86e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQ 123
Cdd:cd12400   3 LFVGNLPYDTTAEDLKEHFKKAGEPPSVRLLTDKKTGKsKGCAFVEFDNQKALQKALKL 61
RRM2_U2B cd12481
RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B") ...
240-310 6.25e-04

RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B"); This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B"), a unique protein that comprises the U2 snRNP. It was initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus.


Pssm-ID: 240925 [Multi-domain]  Cd Length: 80  Bit Score: 38.84  E-value: 6.25e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 240 ILYVRNLMLSTSEEMIEKEFNNIkPG--AVERVKKIRDYAFVHFSNREDAVEAMKALNG-KVLDGSPIEVTLAK 310
Cdd:cd12481   7 ILFLNNLPEETNEMMLSMLFNQF-PGfkEVRLVPGRHDIAFVEFENEAQAGAARDALQGfKITPSHAMKITYAK 79
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
242-307 6.34e-04

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 38.42  E-value: 6.34e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIKPgaverVKKI---------RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd21603   4 FVKNLPLDTNNDEILDFFSKVGP-----IKSVftspkykynSLWAFVTYKKGSDTEKAIKLLNGTLFKGRTIEVT 73
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
242-309 6.72e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 38.81  E-value: 6.72e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIKPGAVERVK-----KIRDYAFVHFSNREDAVEAMkALNGKVLDGSPIEVTLA 309
Cdd:cd12401   9 YVGNLPFNTVQGDLDAIFKDLKVRSVRLVRdretdKFKGFCYVEFEDLESLKEAL-EYDGALFEDRPLRVDIA 80
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
232-311 6.92e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 38.94  E-value: 6.92e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 232 EDTMSSVKILYVRNLMlstSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSP 303
Cdd:cd12771   1 EDSKTNLIVNYLPQNM---TQEELKSLFGSI--GEIESCKLVRDkitgqslgYGFVNYIEPKDAEKAINTLNGLRLQTKT 75

                ....*...
gi 20357578 304 IEVTLAKP 311
Cdd:cd12771  76 IKVSYARP 83
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
241-306 6.98e-04

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 38.75  E-value: 6.98e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12412   5 IFVGGIDWDTTEEELREFFS--KFGKVKDVKIIKDragvskgYGFVTFETQEDAEKIQKWGANLVFKGKKLNV 75
RRM3_hnRNPM_like cd12387
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
241-307 7.47e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409821 [Multi-domain]  Cd Length: 71  Bit Score: 38.34  E-value: 7.47e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVK----KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12387   1 IFVRNLPFDYTWQKLKDKFKDCGHVTFASIKmengKSKGCGTVRFDSPEDAENACRMMNGSKQSGREIDVR 71
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
65-134 7.52e-04

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 38.29  E-value: 7.52e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDfngnnrgYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12609   2 KIFVGNVSATCTSDELRGLFEEFGRVVECDKVKD-------YAFVHMEREEEALAAIEALNGKEVKGRRI 64
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
146-224 7.62e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 38.27  E-value: 7.62e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVTEgVVDV-IVYPSaaDKTKNRGFAFVEYESHRAAAMARRKlLPGRiQLWGHGIAVDWA 224
Cdd:cd12398   3 VFVGNIPYDATEEQLKEIFSEVGP-VVSFrLVTDR--ETGKPKGYGFCEFRDAETALSAVRN-LNGY-ELNGRPLRVDFA 77
RRM_Srp1p_like cd12467
RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and ...
146-224 7.99e-04

RNA recognition motif 1 (RRM1) found in fission yeast pre-mRNA-splicing factor Srp1p and similar proteins; This subgroup corresponds to the RRM domain in Srp1p encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but not essential for growth. Srp1p is closely related to the SR protein family found in metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. Some family members also contain another RRM domain.


Pssm-ID: 240913 [Multi-domain]  Cd Length: 78  Bit Score: 38.63  E-value: 7.99e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVTEGVVDVIVYPSAADktkNRGFAFVEYESHRAAAMARRKLLPGRIQLWGHGIAVDWA 224
Cdd:cd12467   2 LYVTGFGAETRARDLAYEFERYGRLVRCDIPPPRTFQ---SRPFAFVEYESHRDAEDAYEEMHGRRFPDTGDTLHVQWA 77
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
239-309 8.22e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 38.35  E-value: 8.22e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIkpGAVERVK----KIRDY----AFVHFSNREDAVEAMKALN------GKVLDGSPI 304
Cdd:cd12415   1 KTVFIRNLSFDTTEEDLKEFFSKF--GEVKYARivldKDTGHskgtAFVQFKTKESADKCIEAANdesedgGLVLDGRKL 78

                ....*
gi 20357578 305 EVTLA 309
Cdd:cd12415  79 IVSLA 83
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
93-127 8.25e-04

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 38.31  E-value: 8.25e-04
                        10        20        30
                ....*....|....*....|....*....|....*
gi 20357578  93 MRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNY 127
Cdd:cd12254  30 IHIVYDDDGRPTGEAYVEFASEEDAQRALRRHKGK 64
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
241-306 8.41e-04

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 38.83  E-value: 8.41e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAV------ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12641  10 LGVFGLSLYTTERDLREVFSKYGPIADvsivydQQSRRSRGFAFVYFENVDDAKEAKERANGMELDGRRIRV 81
RRM1_PSP1 cd12586
RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup ...
64-131 8.51e-04

RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup corresponds to the RRM1 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Its cellular function remains unknown currently, however, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 409999 [Multi-domain]  Cd Length: 71  Bit Score: 38.36  E-value: 8.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMrmmmdFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRN 131
Cdd:cd12586   2 CRLFVGNLPTDITEEDFKRLFERYGEPSEV-----FINRDRGFGFIRLESRTLAEIAKAELDGTILKS 64
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
66-134 8.71e-04

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 38.43  E-value: 8.71e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMM----DFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12223   4 LYVGNLPPSVTEEVLLREFGRFGPLASVKIMWprteEERRRNRNCGFVAFMSRADAERAMRELNGKDVMGYEL 76
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
66-126 8.81e-04

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 38.33  E-value: 8.81e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12418   3 VRVSNLHPDVTEEDLRELFGRVGPVKSVKINYDRSGRSTGTAYVVFERPEDAEKAIKQFDG 63
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
252-311 8.87e-04

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 38.55  E-value: 8.87e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 252 EEMIEKEFNNI--KPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12770  11 QNMTQEEFRSLfgSIGEIESCKLVRDkitgqslgYGFVNYIDPKDAEKAINTLNGLRLQTKTIKVSYARP 80
RRM2_hnRNPA1 cd12580
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
65-113 9.53e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 409994 [Multi-domain]  Cd Length: 77  Bit Score: 38.41  E-value: 9.53e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSN 113
Cdd:cd12580   2 KIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDrGSGKKRGFAFVTFDD 51
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
241-306 9.61e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 38.19  E-value: 9.61e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVK--------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12397   1 LFVGNLSFETTEEDLRKHFA--PAGKIRKVRmatfedsgKCKGFAFVDFKEIESATNAVKGPINHSLNGRDLRV 72
RRM_PIN4_like cd12253
RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding ...
66-137 1.01e-03

RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding post-transcriptional regulators cip1, cip2 and similar proteins; This subfamily corresponds to the RRM in PIN4, also termed psi inducibility protein 4 or modifier of damage tolerance Mdt1, a novel phosphothreonine (pThr)-containing protein that specifically interacts with the pThr-binding site of the Rad53 FHA1 domain. It is encoded by gene MDT1 (YBL051C) from yeast Saccharomyces cerevisiae. PIN4 is involved in normal G2/M cell cycle progression in the absence of DNA damage and functions as a novel target of checkpoint-dependent cell cycle arrest pathways. It contains an N-terminal RRM, a nuclear localization signal, a coiled coil, and a total of 15 SQ/TQ motifs. cip1 (Csx1-interacting protein 1) and cip2 (Csx1-interacting protein 2) are novel cytoplasmic RRM-containing proteins that counteract Csx1 function during oxidative stress. They are not essential for viability in fission yeast Schizosaccharomyces pombe. Both cip1 and cip2 contain one RRM. Like PIN4, Cip2 also possesses an R3H motif that may function in sequence-specific binding to single-stranded nucleic acids.


Pssm-ID: 240699 [Multi-domain]  Cd Length: 79  Bit Score: 38.20  E-value: 1.01e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIG--KIYEMRMMMDfNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12253   4 IVIKNIPFSLRKEQLLDIIEDLGipLPYAFNYHFD-NGVFRGLAFANFRSPEEAQTVVEALNGYEI-SGRRLRV 75
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
66-137 1.01e-03

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 38.17  E-value: 1.01e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEK-IGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGV 137
Cdd:cd12267   3 VIVSNLPKDVTEAQIREYFVSqIGPIKRVLLSYNEGGKSTGIANITFKRAGDATKAYDKFNGRLDDGNRKMKV 75
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
239-296 1.02e-03

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 37.99  E-value: 1.02e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 239 KILYVRNLML-STSEEMIE--KEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNG 296
Cdd:cd12241   3 RILYVRNLPYkISSEELYDlfGKYGAIRQIRIGNTKETRGTAFVVYEDIFDAKNACDHLSG 63
RRM1_PSF cd12587
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
64-137 1.03e-03

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410000 [Multi-domain]  Cd Length: 71  Bit Score: 37.92  E-value: 1.03e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMrmmmdFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRnGRLLGV 137
Cdd:cd12587   2 CRLFVGNLPADITEDEFKRLFAKYGEPGEV-----FINKGKGFGFIKLESRALAEIAKAELDDTPMR-GRQLRV 69
RRM1_IGF2BP2 cd12626
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
241-311 1.03e-03

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2); This subgroup corresponds to the RRM1 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, which is a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 241070 [Multi-domain]  Cd Length: 77  Bit Score: 38.06  E-value: 1.03e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKV-LDGSPIEVTLAKP 311
Cdd:cd12626   4 LYIGNLSPAVTAEDLRQLFGDRKLPLTGQVLLKSGYAFVDYPDQNWAIRAIETLSGKVeLHGKVMEVDYSVP 75
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
66-138 1.05e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 37.96  E-value: 1.05e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNN-RGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGVC 138
Cdd:cd12413   2 LFVRNLPYDTTDEQLEELFSDVGPVKRCFVVKDKGKDKcRGFGYVTFALAEDAQRALEEVKGKKF-GGRKIKVE 74
RRM_TDRD10 cd21617
RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar ...
241-306 1.07e-03

RNA recognition motif (RRM) found in Tudor domain-containing protein 10 (TDRD10) and similar proteins; TDRD10 is widely expressed and localized both to the nucleus and cytoplasm and may play general roles like regulation of RNA metabolism. It contains a Tudor domain and a RNA recognition motif (RRM).


Pssm-ID: 410196 [Multi-domain]  Cd Length: 69  Bit Score: 37.78  E-value: 1.07e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAV-ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd21617   2 VYVGNLPLDISEEEILQLFKAFNPVLVkKIRSGFKCFAFVDLGSDENVKLAIQQLNGTLFGGRRLVV 68
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
66-130 1.11e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 38.17  E-value: 1.11e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIR 130
Cdd:cd12771   7 LIVNYLPQNMTQEELKSLFGSIGEIESCKLVRDkITGQSLGYGFVNYIEPKDAEKAINTLNGLRLQ 72
RRM_U2AF35B cd12539
RNA recognition motif (RRM) found in splicing factor U2AF 35 kDa subunit B (U2AF35B); This ...
278-306 1.12e-03

RNA recognition motif (RRM) found in splicing factor U2AF 35 kDa subunit B (U2AF35B); This subgroup corresponds to the RRM of U2AF35B, also termed zinc finger CCCH domain-containing protein 60 (C3H60), which is one of the small subunits of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF). It has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. Members in this family are mainly found in plant. They show high sequence homology to vertebrates U2AF35 that directly binds to the 3' splice site of the conserved AG dinucleotide and performs multiple functions in the splicing process in a substrate-specific manner. U2AF35B contains two N-terminal zinc fingers, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal arginine/serine (SR)-rich domain. In contrast to U2AF35, U2AF35B has a plant-specific conserved C-terminal region containing SERE motif(s), which may have an important function specific to higher plants.


Pssm-ID: 409955 [Multi-domain]  Cd Length: 102  Bit Score: 38.53  E-value: 1.12e-03
                        10        20
                ....*....|....*....|....*....
gi 20357578 278 FVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12539  70 YVKFRDEEHAAAALKALQGRFYAGRPIIV 98
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
64-138 1.21e-03

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 38.02  E-value: 1.21e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578  64 CEIFIGKLPRDLFEDELIPL-CEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGVC 138
Cdd:cd12345   2 HSLFVGDLAPDVTDYQLYETfSARYPSVRGAKVVMDpVTGRSKGYGFVRFGDESEQDRALTEMQGVYL-GSRPIRVS 77
RRM_G3BP cd12229
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, ...
65-113 1.23e-03

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins; This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif).


Pssm-ID: 409676 [Multi-domain]  Cd Length: 81  Bit Score: 38.16  E-value: 1.23e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMM-DFNGNNRGYAFVTFSN 113
Cdd:cd12229   5 QLFVGNLPHDITEDELKEFFSRFGNVLELRINSkGGGGRLPNFGFVVFDD 54
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
241-309 1.28e-03

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 37.95  E-value: 1.28e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLmlstSEEMIEKEFNNI--KPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGS--PIEVTL 308
Cdd:cd12651   5 LYVTNL----PRTITEDELDTIfgAYGNIVQKNLLRDkltgrprgVAFVRYDKREEAQAAISALNGTIPEGGtqPLSVRL 80

                .
gi 20357578 309 A 309
Cdd:cd12651  81 A 81
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
146-199 1.29e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 37.59  E-value: 1.29e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVteGVVDVIVYPSAADKTKNRGFAFVEYESHRA 199
Cdd:cd12400   3 LFVGNLPYDTTAEDLKEHFKKA--GEPPSVRLLTDKKTGKSKGCAFVEFDNQKA 54
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
66-134 1.34e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 37.61  E-value: 1.34e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEM---RmmmdfngNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12373   2 VYVGNLGPRVTKRELEDAFEKYGPLRNVwvaR-------NPPGFAFVEFEDPRDAEDAVRALDGRRICGSRV 66
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
237-309 1.56e-03

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 37.88  E-value: 1.56e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 237 SVKILYVRNLMLSTSEEMIEKEFNNIKPGAVERV------KKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12671   5 SLRSVFVGNIPYEATEEQLKDIFSEVGPVVSFRLvydretGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRVDNA 83
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
241-307 1.63e-03

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 37.53  E-value: 1.63e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVT 307
Cdd:cd12365   1 LHVGKLTRNVTKDHLKEIFSVY--GTVKNVDLPIDrepnlprgYAYVEFESPEDAEKAIKHMDGGQIDGQEVTVE 73
RRM2_SREK1 cd12260
RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 ...
242-307 1.64e-03

RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site.


Pssm-ID: 409705 [Multi-domain]  Cd Length: 85  Bit Score: 37.67  E-value: 1.64e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 242 YVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD------YAFVHFSNREDAVEAMKaLNGKVLDGSPIEVT 307
Cdd:cd12260   8 YVGNLDPSTTADQLLEFFS--QAGEVKYVRMAGDetqptrYAFVEFAEQTSVINALK-LNGKMFGGRPLKVN 76
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
66-137 1.73e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 37.74  E-value: 1.73e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12312   3 LFVRNVADDTRPDDLRREFGRYGPIVDVYIPLDFyTRRPRGFAYIQFEDVRDAEDALYYLDRTRF-LGREIEI 74
RRM_ARP_like cd12452
RNA recognition motif (RRM) found in yeast asparagine-rich protein (ARP) and similar proteins; ...
239-306 1.94e-03

RNA recognition motif (RRM) found in yeast asparagine-rich protein (ARP) and similar proteins; This subfamily corresponds to the RRM of ARP, also termed NRP1, encoded by Saccharomyces cerevisiae YDL167C. Although its exact biological function remains unclear, ARP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), two Ran-binding protein zinc fingers (zf-RanBP), and an asparagine-rich region. It may possess RNA-binding and zinc ion binding activities. Additional research had indicated that ARP may function as a factor involved in the stress response.


Pssm-ID: 409886 [Multi-domain]  Cd Length: 83  Bit Score: 37.50  E-value: 1.94e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNN--IKPGAVERVKKIRDY-----AFVHFSNREDAVEAMkALNGKVLDGSPIEV 306
Cdd:cd12452   1 KILYMNGLPHDTTQSELESWFTQhgVRPVAFWTLKTPEQIkpsgsGFAVFQSHEEAAESL-ALNGRALGDRAIEV 74
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
100-133 1.98e-03

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 37.16  E-value: 1.98e-03
                        10        20        30
                ....*....|....*....|....*....|....
gi 20357578 100 NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGR 133
Cdd:cd12405  34 NGRPKGYAFVEFESVEDAKEALESCNNTEI-EGR 66
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
77-129 1.99e-03

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 37.17  E-value: 1.99e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20357578  77 EDELIPLCEKIGKIYEMRMMmdfngNNRGYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12431  17 REQLLEVFEKYGTVEDIVML-----PGKPYSFVSFKSVEEAAKAYNALNGKEL 64
RRM2_MRN1 cd12523
RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This ...
241-294 2.00e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409943 [Multi-domain]  Cd Length: 78  Bit Score: 37.41  E-value: 2.00e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--YAFVHFSNREDAVEAMKAL 294
Cdd:cd12523   6 VYLGNLPESITEEELREDLE--KFGPIDQIKIVKEknIAFVHFLSIANAIKVVTTL 59
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
77-150 2.00e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 37.59  E-value: 2.00e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  77 EDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEirngrLLGVCASVDNCrlFVGG 150
Cdd:cd12324  20 EEDIHDKFAEFGEIKNLHLNLDRrTGFVKGYALVEYETKKEAQAAIEGLNGKE-----LLGQTISVDWA--FVKG 87
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
66-129 2.13e-03

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 37.32  E-value: 2.13e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRgYAFVTFSNKVEAKNAIKQLNNYEI 129
Cdd:cd12615   2 LYVGNLSRDVTEALILQLFSQIGPCKNCKMIMDTAGNDP-YCFVEFHEHRHAAAALAAMNGRKI 64
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
240-306 2.15e-03

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 37.25  E-value: 2.15e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 240 ILYVRNLMLSTSEE---MIEKEFNNIKPGAVERVKKIRD---YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12235   5 VLFVCKLNPVTTDEdleIIFSRFGKIKSCEVIRDKKTGDslqYAFIEFETKESCEEAYFKMDNVLIDDRRIHV 77
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
241-306 2.25e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 36.71  E-value: 2.25e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12606   3 LFIGNLPREATEEEIRSLFE--QYGKVTECDIIKNYGFVHMEDKSAADEAIRNLHHYKLHGVAINV 66
RRM_RBM25 cd12446
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; ...
241-306 2.26e-03

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor.


Pssm-ID: 409880 [Multi-domain]  Cd Length: 83  Bit Score: 37.12  E-value: 2.26e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12446   3 VFVGNIPDDVSDDFIRQLLE--KCGKVLSWKRVQDpsgklkaFGFCEFEDPEGALRALRLLNGLELGGKKLLV 73
RRM2_hnRNPA3 cd12582
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
65-113 2.27e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409996 [Multi-domain]  Cd Length: 80  Bit Score: 37.24  E-value: 2.27e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDF-NGNNRGYAFVTFSN 113
Cdd:cd12582   2 KIFVGGIKEDTEEYHLRDYFEKYGKIETIEVMEDRqSGKKRGFAFVTFDD 51
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
241-309 2.30e-03

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 36.94  E-value: 2.30e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPgaVERVKKIRD------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12615   2 LYVGNLSRDVTEALILQLFSQIGP--CKNCKMIMDtagndpYCFVEFHEHRHAAAALAAMNGRKIMGKEVKVNWA 74
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
185-295 2.32e-03

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 40.82  E-value: 2.32e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578   185 KNRGFAFVEYESHRAAAMARRK----LLPGRIQLWGHGIAVDWAEPEV-EVDEDTMSSVKIlYVRNLMLSTSEEMIE--- 256
Cdd:TIGR01645 147 KHKGFAFVEYEVPEAAQLALEQmngqMLGGRNIKVGRPSNMPQAQPIIdMVQEEAKKFNRI-YVASVHPDLSETDIKsvf 225
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 20357578   257 KEFNNIKPGAVER---VKKIRDYAFVHFSNREDAVEAMKALN 295
Cdd:TIGR01645 226 EAFGEIVKCQLARaptGRGHKGYGFIEYNNLQSQSEAIASMN 267
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
241-309 2.37e-03

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 37.35  E-value: 2.37e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNL--MLSTSEEMIEK---EFNNIKP---GAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd21622   6 LFVKNLddTVITNKEDLEQlfsPFGQIVSsylATYPGTGISKGFGFVAFSKPEDAAKAKETLNGVMVGRKRIFVSYA 82
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
241-301 2.39e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 37.01  E-value: 2.39e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNI--KPGAVERVK----KIRDYAFVHFSNREDAVEAMKaLNGKVLDG 301
Cdd:cd12514   2 IRITNLPYDATPVDIQRFFEDHgvRPEDVHLLRnkkgRGNGEALVTFKSEGDAREVLK-LNGKKLGK 67
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
66-126 2.45e-03

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 37.36  E-value: 2.45e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12244   3 LYISNLPLDMDEQDLENMLKPFGQVISTRILRDSKGQSRGVGFARMESREKCEDVISKFNG 63
RRM1_AtRSp31_like cd12234
RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor ...
66-137 2.45e-03

RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants; This subfamily corresponds to the RRM1in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus.


Pssm-ID: 409680 [Multi-domain]  Cd Length: 72  Bit Score: 36.75  E-value: 2.45e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMmmdfngnNRGYAFVTFSNKVEAKNAIKQLNNYEI-RNGRLLGV 137
Cdd:cd12234   3 VFCGNFEYDARQSEIERLFGKYGRVDRVDM-------KSGYAFVYMEDERDAEDAIRGLDNFEFgRQRRRLRV 68
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
241-309 2.45e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 37.00  E-value: 2.45e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12375   2 LIVNYLPQSMTQEELRSLFGAI--GPIESCKLVRDkitgqslgYGFVNYRDPNDARKAINTLNGLDLENKRLKVSYA 76
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
241-311 2.46e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.91  E-value: 2.46e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12337   2 VYIGRLPYRARERDVERFFRGY--GRIRDINLKNGFGFVEFEDPRDADDAVYELNGKELCGERVIVEHARG 70
RRM2_hnRNPD_like cd12329
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
66-123 2.54e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 240775 [Multi-domain]  Cd Length: 75  Bit Score: 36.96  E-value: 2.54e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNR-GYAFVTFSNKVEAKNAIKQ 123
Cdd:cd12329   2 IFVGGLSPETTEEKIREYFGKFGNIVEIELPMDKKTNKRrGFCFITFDSEEPVKKILET 60
RRM1_RBM26_like cd12257
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar ...
64-126 2.56e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar proteins; This subfamily corresponds to the RRM1 of RBM26, and the RRM of RBM27. RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, represents a cutaneous lymphoma (CL)-associated antigen. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. RBM27 contains only one RRM; its biological function remains unclear.


Pssm-ID: 409702 [Multi-domain]  Cd Length: 72  Bit Score: 36.77  E-value: 2.56e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  64 CEIFIGKLPRDLFEDELIplCE---KIGKIyeMRMMMDFNGNNrgyAFVTFSNKVEAKNAIKQ----LNN 126
Cdd:cd12257   2 TTLEVRNIPPELNNITKL--REhfsKFGTI--VNIQVNYNPES---ALVQFSTSEEANKAYRSpeavFNN 64
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
175-225 2.57e-03

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 36.91  E-value: 2.57e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20357578 175 IVYPSAADKTKnrGFAFVEYESHRAAAMARRKLLPGRIQlwGHGIAVDWAE 225
Cdd:cd12389  31 LVYSEVTGESK--GYGFVEYTSKESAIRAKNQLHGRQIG--GRALQVDWLD 77
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
66-135 2.69e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.53  E-value: 2.69e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngnnRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12337   2 VYIGRLPYRARERDVERFFRGYGRIRDINLK-------NGFGFVEFEDPRDADDAVYELNGKELCGERVI 64
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
66-134 2.72e-03

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 36.87  E-value: 2.72e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIyemRMMMdFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12524   4 LFVRNINSSVEDEELRALFEQFGEI---RTLY-TACKHRGFIMVSYYDIRAAQSAKRALQGTELGGRKL 68
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
66-133 2.79e-03

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 36.94  E-value: 2.79e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLnNYEIRNGR 133
Cdd:cd21601   3 LFIGDLDKDVTEEMLRDIFSKYKSLVSVKICLDSEtKKSLGYGYLNFSDKEDAEKAIEEF-NYTPIFGK 70
RRM3_Spen cd12310
RNA recognition motif 3 (RRM3) found in the Spen (split end) protein family; This subfamily ...
241-302 2.82e-03

RNA recognition motif 3 (RRM3) found in the Spen (split end) protein family; This subfamily corresponds to the RRM3 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B) and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and is a novel component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409750 [Multi-domain]  Cd Length: 72  Bit Score: 36.88  E-value: 2.82e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIkpGAVERVKKI--RDYAFVHFSNREDAVEAMKALNGKVLDGS 302
Cdd:cd12310   1 LWVGGLGPWTSLAELEREFDRF--GAIRKIDYRkgDDYAYILYESLDAAQAAVRALRGFPLGGP 62
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
265-310 2.83e-03

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 36.82  E-value: 2.83e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*....
gi 20357578 265 GAVERVKKI---RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12423  25 GDVLRVKILfnkKDTALIQMADPQQAQTALQHLNGIKLFGKPIRVTLSK 73
RRM1_TIAR cd12616
RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup ...
241-309 2.83e-03

RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410028 [Multi-domain]  Cd Length: 81  Bit Score: 36.99  E-value: 2.83e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPgaVERVKKIRD------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12616   2 LYVGNLSRDVTEVLILQLFSQIGP--CKSCKMITEhtsndpYCFVEFYEHRDAAAALAAMNGRKILGKEVKVNWA 74
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
143-222 2.96e-03

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 36.90  E-value: 2.96e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 143 NCRLFVGGIpKTKKREEILSEMKkVTEGVVDVIVYPSAADkTKNRGFAFVEYESHRAAAMArRKLLPGrIQLWGHGIAVD 222
Cdd:cd12336   1 DRTLFVGNL-DPRVTEEILYELF-LQAGPLEGVKIPKDPN-GKPKNFAFVTFKHEVSVPYA-IQLLNG-IRLFGREIRIK 75
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
66-130 3.02e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 37.01  E-value: 3.02e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIR 130
Cdd:cd12770   4 LIVNYLPQNMTQEEFRSLFGSIGEIESCKLVRDkITGQSLGYGFVNYIDPKDAEKAINTLNGLRLQ 69
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
243-306 3.15e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 36.89  E-value: 3.15e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 243 VRNLMLSTSEEMIEKEFNNIKPGAV------ERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12642   9 VFGLSLYTTERDLREVFSRYGPLAGvnvvydQRTGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRV 78
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
146-205 3.19e-03

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 36.92  E-value: 3.19e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVteGVVDVIVYPSAADKTKNRGFAFVEYESHRAAAMARR 205
Cdd:cd12290   2 VYVELLPKNATHEWIEAVFSKY--GEVVYVSIPRYKSTGDPKGFAFIEFETSESAQKAVK 59
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
241-306 3.36e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 36.44  E-value: 3.36e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMkALNGKVLDGSPIEV 306
Cdd:cd12283   2 VFVMQLSLKARERDLYEFFS--KAGKVRDVRLIMDrnsrrskgVAYVEFYDVESVPLAL-ALTGQRLLGQPIMV 72
RRM2_MSI2 cd12573
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homolog 2 (Musashi-2) and ...
65-131 3.55e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homolog 2 (Musashi-2) and similar proteins; This subgroup corresponds to the RRM2 of Musashi-2 (also termed Msi2) which has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Musashi-2 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 409987 [Multi-domain]  Cd Length: 76  Bit Score: 36.53  E-value: 3.55e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSNKvEAKNAIKQLNNYEIRN 131
Cdd:cd12573   2 KIFVGGLSANTVVEDVKQYFEQFGKVEDAMLMFDKTTNrHRGFGFVTFENE-DVVEKVCEIHFHEINN 68
RRM1_hnRNPA_like cd12578
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
65-123 3.62e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409992 [Multi-domain]  Cd Length: 78  Bit Score: 36.65  E-value: 3.62e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  65 EIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFSNKVEAKNAIKQ 123
Cdd:cd12578   1 KLFIGGLSYETTDDSLRNHFEQWGEITDVVVMKDPATKrSRGFGFVTYSSASEVDAAMNA 60
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
66-134 3.64e-03

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 36.78  E-value: 3.64e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12673   5 IFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDRAGVSKGYGFITFETQEDAQKILQEAEKLNYKDKKL 73
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
239-306 3.73e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 36.34  E-value: 3.73e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFnnIKPGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12592   2 RTLFVGNLDTKVTEELLFELF--LQAGPVIKVKipkdkdgKPKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKI 74
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
89-126 4.10e-03

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 36.48  E-value: 4.10e-03
                        10        20        30
                ....*....|....*....|....*....|....*....
gi 20357578  89 KIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNN 126
Cdd:cd12313  30 PIKDVRLIRDkLTGTSRGFAFVEFSSLEDATQVMDALQN 68
RRM1_RBM19_MRD1 cd12315
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple ...
241-309 4.22e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM1 of RBM19 and MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409754 [Multi-domain]  Cd Length: 81  Bit Score: 36.37  E-value: 4.22e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFN---NIKPGAVERVK-------KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12315   3 LIVKNLPLSLDEDQFRRLFSqkcKDIGLTITDCKlltksggVSRRFGFVGFKDEEDAQKAKEFFNGTYFRTSKVTVEFS 81
RRM2_AtRSp31_like cd12466
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana arginine/serine-rich-splicing ...
241-300 4.27e-03

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants; This subgroup corresponds to the RRM2 in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus.


Pssm-ID: 409899 [Multi-domain]  Cd Length: 70  Bit Score: 36.03  E-value: 4.27e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 241 LYVRNL-MLSTSEEMIEKEFnniKP-GAVERVKKIRDYAFVHFSNREDAVEAMKALN-GKVLD 300
Cdd:cd12466   2 LFVINFdPIRTKERDLERHF---EPyGKVVNVRIRRNFAFVQYETQEDATKALDATQsSKIMD 61
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
274-309 4.39e-03

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 36.53  E-value: 4.39e-03
                        10        20        30
                ....*....|....*....|....*....|....*...
gi 20357578 274 RDYAFVHFSNREDAVEAMKALNGKVLDGS--PIEVTLA 309
Cdd:cd12652  42 RGVGFIRFDKRVEAERAIKALNGTIPPGAtePITVKFA 79
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
62-126 4.46e-03

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 36.33  E-value: 4.46e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  62 RGCEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFNGN-NRGYAFVTFsnkvEAKNAIKQLNN 126
Cdd:cd12327   1 KSKKVFVGGIPHNCGETELRDYFKRYGVVTEVVMMYDAEKQrSRGFGFITF----EDEQSVDQAVN 62
RRM1_SRSF1 cd12597
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
64-134 4.88e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 of SRSF1, also termed alternative-splicing factor 1 (ASF-1), or pre-mRNA-splicing factor SF2, P33 subunit. SRSF1 is a splicing regulatory serine/arginine (SR) protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF1 is a shuttling SR protein and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a long glycine-rich spacer, and a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410010 [Multi-domain]  Cd Length: 79  Bit Score: 36.36  E-value: 4.88e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngNNRG---YAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12597   5 CRIYVGNLPPDIRTKDIEDVFYKYGAIRDIDLK-----NRRGgppFAFVEFEDPRDAEDAVYGRDGYDYDGYRL 73
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
272-306 4.96e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 36.22  E-value: 4.96e-03
                        10        20        30
                ....*....|....*....|....*....|....*
gi 20357578 272 KIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12353  39 KSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRT 73
RRM1_MYEF2 cd12658
RNA recognition motif 1 (RRM1) found in vertebrate myelin expression factor 2 (MEF-2); This ...
66-137 5.00e-03

RNA recognition motif 1 (RRM1) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM1 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410059 [Multi-domain]  Cd Length: 76  Bit Score: 36.11  E-value: 5.00e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLC-EKIGKIYEMRMMMDFNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12658   2 VFISNIPYDMKWQAIKDLMrEKVGEVTYVELFKDAEGKSRGCGVVEFKDEEFVKKALEVMNKYDL-SGRPLNI 73
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
241-305 5.00e-03

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 36.20  E-value: 5.00e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD-------YAFVHFSNREDAVEAMKALNGKVLDGSPIE 305
Cdd:cd12244   3 LYISNLPLDMDEQDLENMLK--PFGQVISTRILRDskgqsrgVGFARMESREKCEDVISKFNGKVLKTPSAS 72
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
240-306 5.19e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 36.04  E-value: 5.19e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 240 ILYVRNLMLSTSEEMIEKEFNNIkpGAVERV--------KKIRDYAFVHFSNREDAVEAMKaLNGKVLDGSPIEV 306
Cdd:cd12400   2 ILFVGNLPYDTTAEDLKEHFKKA--GEPPSVrlltdkktGKSKGCAFVEFDNQKALQKALK-LHHTSLGGRKINV 73
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
146-225 5.35e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 36.20  E-value: 5.35e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 146 LFVGGIPKTKKREEILSEMKKVTEgVVDVIVyPSAADKTKNRGFAFVEYESHRAAAMARRKLlpGRIQLWGHGIAVDWAE 225
Cdd:cd12312   3 LFVRNVADDTRPDDLRREFGRYGP-IVDVYI-PLDFYTRRPRGFAYIQFEDVRDAEDALYYL--DRTRFLGREIEIQFAQ 78
RRM_SRSF7 cd12646
RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); ...
241-309 5.44e-03

RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); This subgroup corresponds to the RRM of SRSF7, also termed splicing factor 9G8, is a splicing regulatory serine/arginine (SR) protein that plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. SRSF7 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a CCHC-type zinc knuckle motif in its median region, and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 410050 [Multi-domain]  Cd Length: 77  Bit Score: 36.09  E-value: 5.44e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKP-GAVERVKKIRDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLA 309
Cdd:cd12646   2 VYVGNLGTGAGKGELERAFSYYGPlRTVWIARNPPGFAFVEFEDPRDAEDAVRGLDGKVICGSRVRVELS 71
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
239-309 5.60e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 36.05  E-value: 5.60e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKI----------RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEVTL 308
Cdd:cd12239   2 NRLYVKNLSKRVSEKDLKYIFGRFVDSSSEEKNMFdirlmtegrmKGQAFITFPSEELAEKALNLTNGYVLHGKPMVVQF 81

                .
gi 20357578 309 A 309
Cdd:cd12239  82 A 82
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
145-200 5.74e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 35.71  E-value: 5.74e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20357578 145 RLFVGGIpKTKKREEIL----SEMKKVTegVVDVIVypsaaDKT--KNRGFAFVEYESHRAA 200
Cdd:cd12328   1 KLFVGGL-KEDVEEEDLreyfSQFGKVE--SVEIVT-----DKEtgKKRGFAFVTFDDHDSV 54
RRM4_Nop4p cd12677
RNA recognition motif 4 (RRM4) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
153-233 5.75e-03

RNA recognition motif 4 (RRM4) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM4 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410078 [Multi-domain]  Cd Length: 158  Bit Score: 37.92  E-value: 5.75e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 153 KTKKREEILSEMKKVTEGvvdvivypSAADKTKNRGFAFVEYESHRAAAMARRkllpgriqlWGHGIAV----------D 222
Cdd:cd12677  63 KKKKKSGVVRQAKIIFEK--------AGGGAGRSRGYGFIEYYTHRDALMGLR---------WLNGHAVtskkieeeykE 125
                        90
                ....*....|.
gi 20357578 223 WAEPEVEVDED 233
Cdd:cd12677 126 EMKDEIENDPG 136
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
240-306 6.22e-03

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 36.00  E-value: 6.22e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578 240 ILYVRNLMLSTSEEMIEK---EFNNIKPGAVERVKKI---RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12552   1 IIYVSHLPHGFHEKELKKyfaQFGDLKNVRLARSKKTgnsKHYGFLEFVNPEDAMIAQKSMNNYLLMGKLLQV 73
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
276-306 6.30e-03

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 35.69  E-value: 6.30e-03
                        10        20        30
                ....*....|....*....|....*....|.
gi 20357578 276 YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12417  43 YGYVTMASVEEADLCIKSLNKTELHGRVITV 73
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
241-295 6.37e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 36.42  E-value: 6.37e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 241 LYVRNLMLSTSEEMIEK-------EFNNIKPGAVERVKKIRD--------------YAFVHFSNREDAVEAMKALN 295
Cdd:cd12416   3 LCVRNLPKSVDDKKLKKlflkavkERAKKKGVKIKEVKVMRDkkrlnsdgkgrskgYGFVEFTEHEHALKALRALN 78
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
239-296 6.73e-03

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 36.91  E-value: 6.73e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNG 296
Cdd:cd21615  19 KTLFVGRLDYSLTELELQKKFS--KFGEIEKIRIVRDketgksrgYAFIVFKSESDAKNAFKEGNG 82
RRM_RDM1 cd12364
RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar ...
239-308 6.94e-03

RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar proteins; This subfamily corresponds to the RRM of RDM1, also termed RAD52 homolog B, a novel factor involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. RDM1 contains a small RD motif that shares with the recombination and repair protein RAD52, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RD motif is responsible for the acidic pH-dependent DNA-binding properties of RDM1. It interacts with ss- and dsDNA, and may act as a DNA-damage recognition factor by recognizing the distortions of the double helix caused by cisplatin-DNA adducts in vitro. In addition, due to the presence of RRM, RDM1 can bind to RNA as well as DNA.


Pssm-ID: 409799 [Multi-domain]  Cd Length: 81  Bit Score: 35.81  E-value: 6.94e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 239 KILYVRNLMLSTSEEMIE----KEFNNIkpGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVL-DGSPIE 305
Cdd:cd12364   1 KTLFVWNISPKLTEEEIYeslcKAFSAF--GLLYSVRVFPNaavatpgfYAFVKFYSARDASRAQKALNGKWLfQGSPLK 78

                ...
gi 20357578 306 VTL 308
Cdd:cd12364  79 VRF 81
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
252-311 7.19e-03

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 35.84  E-value: 7.19e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578 252 EEMIEKEFNNI--KPGAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAKP 311
Cdd:cd12649  10 QDLTDREFRALfrAIGPVNTCKIVRDkktgysygFGFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYARP 79
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
64-137 7.19e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 35.85  E-value: 7.19e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578  64 CEIFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12370   1 CRVYVGSIYFELGEDTIRQAFAPFGPIKSIDMSWDpVTMKHKGFAFVEYEVPEAAQLALEQMNGVML-GGRNIKV 74
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
241-306 7.22e-03

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 35.78  E-value: 7.22e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKpgAVERVKKIRD--------YAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd21601   3 LFIGDLDKDVTEEMLRDIFSKYK--SLVSVKICLDsetkkslgYGYLNFSDKEDAEKAIEEFNYTPIFGKEVRI 74
RRM1_AtRSp31_like cd12234
RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor ...
239-295 7.30e-03

RNA recognition motif (RRM) found in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants; This subfamily corresponds to the RRM1in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus.


Pssm-ID: 409680 [Multi-domain]  Cd Length: 72  Bit Score: 35.59  E-value: 7.30e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 239 KILYVRNLMLSTSEEMIEKEFNniKPGAVERVKKIRDYAFVHFSNREDAVEAMKALN 295
Cdd:cd12234   1 KPVFCGNFEYDARQSEIERLFG--KYGRVDRVDMKSGYAFVYMEDERDAEDAIRGLD 55
RRM4_RBM45 cd12369
RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
274-306 7.49e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM4 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409804 [Multi-domain]  Cd Length: 68  Bit Score: 35.35  E-value: 7.49e-03
                        10        20        30
                ....*....|....*....|....*....|...
gi 20357578 274 RDYAFVHFSNREDAVEAMKALNGKVLDGSPIEV 306
Cdd:cd12369  35 KNVGYAKYADRESAEEAITTLHGKEVNGVKLKV 67
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
241-311 7.61e-03

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 35.84  E-value: 7.61e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20357578 241 LYVRNLMLSTSEEMIEKEFNNIKPGAVERVKKIRD------YAFVHFSNREDAVEAMkALNGKVLDGSPIEVTLAKP 311
Cdd:cd12450   2 LFVGNLSWSATQDDLENFFSDCGEVVDVRIAMDRDdgrskgFGHVEFASAESAQKAL-EKSGQDLGGREIRLDLANE 77
RRM3_MEI2_EAR1_like cd12277
RNA recognition motif 3 (RRM3) found in Mei2-like proteins and terminal EAR1-like proteins; ...
70-138 7.78e-03

RNA recognition motif 3 (RRM3) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM3 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409719 [Multi-domain]  Cd Length: 86  Bit Score: 35.68  E-value: 7.78e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  70 KLPRDLFEDELIPLCEKiGKIYEMRMMMDF-NGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLLGVC 138
Cdd:cd12277   9 KYTQEMLLQEIDEHGKG-GAYDFFYLPLDFkTKCNVGYAFINFINPEAAERFYKAFNGKKWKNFPSKKVC 77
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
71-123 8.08e-03

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 35.46  E-value: 8.08e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20357578  71 LPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQ 123
Cdd:cd12321   7 LPWKTTEQDLKEYFSTFGEVLMVQVKKDPKtGRSKGFGFVRFASYETQVKVLSQ 60
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
66-138 8.14e-03

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 35.36  E-value: 8.14e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAiKQLNNYEIRnGRLLGVC 138
Cdd:cd12306   2 IYVGNVDYGTTPEELQAHFKSCGTINRVTILCDkFTGQPKGFAYIEFVDKSSVENA-LLLNESEFR-GRQIKVT 73
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
66-134 8.40e-03

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 35.38  E-value: 8.40e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMmmdfnGNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRL 134
Cdd:cd12346   4 VFVGGLDPNVTEEDLRVLFGPFGEIVYVKI-----PPGKGCGFVQFVNRASAEAAIQKLQGTPIGGSRI 67
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
66-140 8.73e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 35.45  E-value: 8.73e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMD-FNGNNRGYAFVTFSNKVEAKNAIKQLNNyEIRNGRLLGVCAS 140
Cdd:cd12567   5 LFVRNLPYTCTEEDLEKLFSKYGPLSEVHFPIDsLTKKPKGFAFVTYMIPEHAVKAYAELDG-TVFQGRLLHLLPS 79
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
66-137 8.80e-03

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 35.31  E-value: 8.80e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMMDFN-GNNRGYAFVTFSNKVEAKNAIKQLNNYEIrNGRLLGV 137
Cdd:cd12417   2 LWISGLSDTTKAADLKKIFSKYGKVVSAKVVTSARtPGSRCYGYVTMASVEEADLCIKSLNKTEL-HGRVITV 73
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
242-310 8.98e-03

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 35.50  E-value: 8.98e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20357578 242 YVRNLMLSTSEEMIEKEFNNIkpGAVERVKKIRD--YAFVHFSNREDAVEAMKALNGKVLDGSPIEVTLAK 310
Cdd:cd12622   4 YVGNLPPEVTQADLIPLFQNF--GVIEEVRVQRDkgFGFVKYDTHEEAALAIQQLNGQPFLGRPIKCSWGK 72
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
66-135 9.26e-03

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 35.43  E-value: 9.26e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20357578  66 IFIGKLPRDLFEDELIPLCEKIGKIYEMRMMmdfngNNRGYAFVTFSNKVEAKNAIKQLNNYEIRNGRLL 135
Cdd:cd12358   1 LYIGNLSSDVNESDLRQLFEEHKIPVSSVLV-----KKGGYAFVDCPDQSWADKAIEKLNGKILQGKVIE 65
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
143-207 9.29e-03

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 35.23  E-value: 9.29e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20357578 143 NCRLFVGGIPKTKKrEEILSEMKKVTEGVVDVIVYPsaadktkNRGFAFVEYESHRAAAMARRKL 207
Cdd:cd12247   2 NKILFLQNLPEETT-KEMLEMLFNQFPGFKEVRLVP-------RRGIAFVEFETEEQATVALQAL 58
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
182-223 9.55e-03

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 35.24  E-value: 9.55e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....
gi 20357578 182 DKTKNR--GFAFVEYESHRAAAMARRKLlpGRIQLWGHGIAVDW 223
Cdd:cd12240  33 DKFKKTpcGFCFVEYYSREDAENAVKYL--NGTKLDDRIIRVDW 74
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
278-304 9.74e-03

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 35.38  E-value: 9.74e-03
                        10        20
                ....*....|....*....|....*..
gi 20357578 278 FVHFSNREDAVEAMKALNGKVLDGSPI 304
Cdd:cd12346  41 FVQFVNRASAEAAIQKLQGTPIGGSRI 67
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
146-203 9.95e-03

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 35.28  E-value: 9.95e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 20357578 146 LFVGGIPKTKKREEILSEMkkVTEG-VVDVIVyPSAADKTKNRGFAFVEYESHRAAAMA 203
Cdd:cd12347   1 LYVGGLAEEVDEKVLHAAF--IPFGdIVDIQI-PLDYETEKHRGFAFVEFEEAEDAAAA 56
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH